Skip to main content

Light regimes used in conifer tissue culture

  • Chapter

Part of the book series: Forestry Sciences ((FOSC,volume 41))

Abstract

Light has a major influence on the growth, development and morphogenesis of plants. In an in vitro environment, where conditions are manipulated to optimize a given response, careful consideration should be given to light quantity and intensity as well as the photoperiod. Unfortunately, all too often the light regime used for a given microculture situation is based either on (1) incomplete information of the optimum in vitro requirements for the species and tissue with which one is working or (2) the conditions that currently exist or are available in a particular research setting. Often a compromise must be also made when choosing a light regime to satisfy a wide range of species within a single growth area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdullah A, Yeoman MM, and Grace J (1985) In vitro adventitious shoot formation from embryonic and cotyledonary tissues of Pinus brutia Ten. Plant Cell, Tissue Organ Culture 5:35–44.

    Article  Google Scholar 

  2. Abdullah A and Grace J (1986) Rapid micropropagation of Calabrian pine from primary and secondary buds on shoot explants. Can J For Res 16:637–641.

    Article  Google Scholar 

  3. Aitken J, Horgan KJ, and Thorpe TA (1981) Influence of explant selection on the shoot-forming capacity of juvenile tissue of Pinus radiata. Can J For Res 11:112–117.

    Article  Google Scholar 

  4. Aitken-Christie, J, Jones C, and Bond S (1985) Wet and waxy shoots in radiata pine micropropagation. Acta Hort 116:93–100.

    Google Scholar 

  5. Amerson HV and Mott RL (1982) Improved rooting of western white pine shoots from tissue cultures. Forest Sci 28(4):822–825.

    Google Scholar 

  6. Amerson HV (1983) Loblolly pine in vitro propagation from juvenile materials: methods and regulatory features. Proc ICTCWG, Tacoma, Washington.

    Google Scholar 

  7. Amerson HV, Frampton LJ, McKeand SE, Mott RL, and Weir, RJ (1984) Loblolly pine tissue culture: laboratory greenhouse, and field studies. In: Henke RR, Hughes KW, and Constantin MJ (Eds.) Tissue Culture in Forestry and Agriculture. Plenum Press, New York, pp. 271–288.

    Google Scholar 

  8. Ball EA, Morris DM, and Rydelius, JA (1978) Cloning of Sequoia sempervirens from mature trees through tissue culture. Proc Multi In vitro d’Especes Ligneuses Gembloux, Belgium, pp.181-226.

    Google Scholar 

  9. Barnett JR (1978) Fine structure of parenchymatous and differentiated Pinus radiata callus. Ann Bot 42:367–373.

    Google Scholar 

  10. Baur PS and Walkinshaw CH (1974) Fine structure of tannin accumulations in callus cultures of Pinus elliotti (slash pine). Can J Bot 52:615–619.

    Article  Google Scholar 

  11. Baxter R, Brown SN, England NF, Ludlow CHM, Taylor SL, and Womack RW 1989) Production of clonal plantlets of tropical pine in tissue culture via axillary shoot activation. Can J For Res 19:1338–1342.

    Article  Google Scholar 

  12. Becwar MR, Noland TL, and Wann SR (1987) Somatic embryo development and plant regeneration from embryogenic Norway spruce callus. Tappi, April: 155-160.

    Google Scholar 

  13. Becwar MR, Verhagen SA, and Wann SR (1987) The frequency of plant regeneration from Norway spruce somatic embryos. In: Proc 19th Southern Forest Tree Improvement Conf, College Station, Texas, pp. 92–100.

    Google Scholar 

  14. Becwar MR, Wann SR, Johnson MA, Verhagen SA, Feirer RP, and Nagmani R (1988) Development and characterization of in vitro embryogenic systems in conifers. In: Ahuja RM (Ed.) Proc Int Union of Foresty Research Organization Workshop. Somatic Cell Genetics of Woody Plants. Martinus Nijhoff Publ, Dordrecht.

    Google Scholar 

  15. Becwar MR, Noland TL, and Wycokoff JL (1989) Maturation, germination, and conversion of Norway spruce (Picea abies L.) somatic embryos to plants. In Vitro Cell & Devel Biol 25(6):575–580.

    Article  Google Scholar 

  16. Berlyn GP, Anoruo AO, Beck RC, and Cheng J (1987) DNA content polymorphism and tissue culture regeneration in carribean pine. Can J Bot 65:954–961.

    Article  CAS  Google Scholar 

  17. Bigot C and Engelman F (1987) Vegetative propagation in vitro of Cunninghamia lanceolata (Lamb) Hook. In: Bonga JM and Durzan DJ (eds.) Cell and Tissue Culture in Forestry, Martinus Nijhoff Publishers, Dordrecht, pp. 114–127.

    Chapter  Google Scholar 

  18. Blum BM (1988) Variation in the phenology of bud flushing in white and red spruce. Can J For Res 18:315–319.

    Article  Google Scholar 

  19. Bonga JM (1977) Organogenesis in in vitro cultures of embryonic shoots of Abies balsamea. In Vitro 13(l):41–48.

    Article  PubMed  CAS  Google Scholar 

  20. Bonga JM (1981) Organogenesis in vitro of tissues from mature conifers. In Vitro 17(6): 511–518.

    Article  Google Scholar 

  21. Bonga JM (1982a) Tissue culture techniques. In: Bonga J and Durzan D (Eds.) Tissue Culture in Forestry. Martinus Nijhoff Publishers, The Hague, pp. 4–35.

    Chapter  Google Scholar 

  22. Bonga JM (1982b). Shoot formation in callus from the stalks of young female strobili of Larix decidua. Can J Bot 60:1357–1359.

    Article  Google Scholar 

  23. Bonga JM (1984a) Adventitious shoot formation in cultures of immature female strobili of Larix decidua. Physiol Plant 62:416–421.

    Article  Google Scholar 

  24. Bonga JM (1984b) Adventitious shoot and root formation in tissue cultures of mature Larix decidua. Proc Inter Sym Recent Adv for Biotech, Michigan, pp. 64-68.

    Google Scholar 

  25. Bornman CH (1983) Possibilities and constraints in the regeneration of trees from cotyledonary needles of Picea abies in vitro. Physiol Plant 57:5–16.

    Article  Google Scholar 

  26. Bose A and Clay LKC (1981) Vegetative propagation of redwood. In: Colloque Inter Sur la Culture in vitro des Essences Forestieres, France, pp. 197-200.

    Google Scholar 

  27. Boulay MP, Gupta PK, Krogstrup, P, and Durzan DJ (1988) Development of somatic embryos from cell suspension cultures of Norway spruce (Picea abies Karts.). Plant Cell Reports 7:134–137.

    Article  Google Scholar 

  28. Brown CL and Sommer HE (1977) Bud and root differentiation in conifer cultures. Tappi 60(6):72–73.

    Google Scholar 

  29. Campbell R and Durzan D (1975) Induction of multiple buds and needles in tissue culture of Picea glauca. Can J Bot 53(16):1652–1657.

    Article  CAS  Google Scholar 

  30. Campbell RA and Durzan DJ (1976) Vegetative propagation of Picea glauca by tissue culture. Can J For Res 6(2):240–243.

    Article  Google Scholar 

  31. Cheng T-Y (1975) Adventitious bud formation in culture of Douglas fir (Pseudotsuga menziesii (Mirb) Franco). Plant Sci Lett 5:97–102.

    Article  CAS  Google Scholar 

  32. Cheng T-Y (1976) Vegetative propagation of western hemlock (Tsuga heterophylla) through tissue culture. Plant Cell Physiol 17:1347–1350.

    CAS  Google Scholar 

  33. Cheng T-Y (1977a) Factors effecting adventitious bud formation of cotyledon culture of Douglas fir. Plant Sci Lett 9:179–187.

    Article  CAS  Google Scholar 

  34. Cheng T-Y (1977b) Regenration of Douglas fir plantlets through tissue culture. Science 198:306–307.

    Article  PubMed  CAS  Google Scholar 

  35. Cheng T-Y (1978) Clonal propagation of woody plant species through tissue culture techniques. Proc Intern Plant Propagators’ Soc 28:139–155.

    Google Scholar 

  36. Chretien L and Vieth J (1984) Neoformation de bourgeons adventifs sur des portions de bourgeons vegetatifs de Picea pungesn cv. Foliis aureis cultivees in vitro. Can J Bot 62:185–187.

    Article  Google Scholar 

  37. Coleman WK and Thorpe TA (1977) In vitro culture of western redcedar (Thuja plicata Donn). I. Plantlet formation. Bot Gaz 138(3):298–304.

    Article  CAS  Google Scholar 

  38. Coleman WK and Thorpe TA (1978) In vitro culture of western redcedar (Thuja plicata). II. Induction of male strobili from vegetative shoot tips. Can J Bot 56:557–564.

    Article  CAS  Google Scholar 

  39. Cuozzo M, Kay SA, and Chua N-H (1988) Regulatory circuits of light-response genes. In: Verma DPS and Goldberg RB (Eds.) Temporal and Spatial Regulation of Plant Genes. Springer-Verlag, New York, pp. 131–153.

    Chapter  Google Scholar 

  40. D’Aoust AL and Hubac C (1986) Phytochrome action and frost hardening in black spruce seedlings. Physiol Plant 67:141–144.

    Article  Google Scholar 

  41. David H, Isemukali K, and David A (1978) Obtention de plants de Pin maritime (Pinus pinaster Sol.) a partir de brachyblastes ou d’apex caulinaires de tres jeunes sujets cultives in vitro. CR Acad Sc Paris 287:245–248.

    Google Scholar 

  42. David H, Jarlet E, and David A (1984) Effects of nitrogen source, calcium concentration and osmotic stress on protoplasts and protoplast-derived cell cultures of Pinus pinaster cotyledons. Physiol Plant 61:477–482.

    Article  CAS  Google Scholar 

  43. Diner AM (1990) Clonal propagation of mature Larix. New Forests 4:63–66.

    Article  Google Scholar 

  44. Douglas TJ, Villalobos VM, Thompson MR, and Thorpe TA (1982) Lipid and pigment changes during shoot initiation in cultured explants of Pinus radiata. Physiol Plant 55:470–477.

    Article  CAS  Google Scholar 

  45. Dunstan DI, Bekkaous F, Pilon M, Fowke LC, and Abrams SR (1988) Effects of abscisic acid and analogous on the maturation of white spruce (Picea glauca) somatic embryos. Plant Sci 58:77–84.

    Article  CAS  Google Scholar 

  46. Durzan D and Lopushanski M (1973) Effects of environmental changes on sugars, tannins and organized growth in cell suspension cultures of white spruce. Planta (Berl) 113:241–249.

    Article  CAS  Google Scholar 

  47. Durzan DJ and Gupta PK (1987) Somatic embryogenesis and polyembryogenesis in Douglas-fir cell suspension cultures. Plant Sci 52:229–235.

    Article  CAS  Google Scholar 

  48. Ellis DD and Bilderback DE (1984) Multiple bud formation by cultured embryos of Pinus ponderosa. J Plant Physiol 115:201–204.

    Article  PubMed  CAS  Google Scholar 

  49. Ellis DD and Judd RC (1987) SDS-PAGE analysis of bud-forming cotyledons of Pinus ponderosa. Plant Cell, Tissue Organ Culture 11:57–65.

    Article  CAS  Google Scholar 

  50. Ellis DD and Bilderback (1991) Ponderosa pine (Pinus ponderosa Laws.). In: Bajaj YPS (Ed.) Biotechnology in Forestry, Trees III, Springer-Verlag, Berlin. 339–357.

    Google Scholar 

  51. Ellis DD, McCown B, Skilling D, Barker M, Serres R, and Ostry M (1991) Establishment of a shoot culture system for Larix decidua. In: Ahuja MR (Ed.) Woody Plant Biotechnology, Plenum Publishing, New York, 335–338.

    Chapter  Google Scholar 

  52. Ellis DD, Barczynska H, McCown BH, and Nelson N (1991) A comparison of BA, zeatin and thidiazuron for adventitious bud formation from Picea glauca embryos and epicotyl explants. Plant Cell Tissue Organ Culture, 281-287.

    Google Scholar 

  53. Evers PW (1985) Growth and morphogenesis of shoot initials of Douglas fir, Pseudotsuga menziesii (Mirb.) Franco, in vitro. Neth J Agri Sci 33:179–181.

    Google Scholar 

  54. Flinn BS, Webb DT, and Georgis W (1986) In vitro control of caulogenesis by growth regulators and media components in embryogenic explants of eastern white pine (Pinus strobus). Can J Bot 64:1948–1956.

    Article  CAS  Google Scholar 

  55. Flinn BS, Webb DT, and Newcomb W (1988) The role of cell clusters and promeristemoids in determination and competence for caulogenesis of Pinus strobus cotyledons in vitro. Can J Bot 66:1556–1565.

    Article  Google Scholar 

  56. Franclet A, David A, David H, and Boulay M (1980) Premiere mise en evidence morphologique d’ un rejeunissement de meristemes primaires caulinaires de Pin maritime age (Pinus pinaster Sol.). CR Acad Se Paris 290:927–930.

    Google Scholar 

  57. Franco EO and Schwarz OJ (1984) Micropropagation of two tropical conifers: Pinus oocarpa Schiede and Cupressus lusitanica Miller. In: Henke RR, Hughes KW, and Hollaender A. (Eds.) Tissue Culture in Forestry and Agriculture. Plenum Press, New York, pp. 195–214.

    Google Scholar 

  58. George EF and Sherrington PD (1984) Plant propagation by tissue culture. Exergenetics Ltd., Eversley, England. pp. 709.

    Google Scholar 

  59. Gladfelter HJ and Phillips GC (1987) De novo shoot organogenesis of Pinus eldarica Medw. in vitro I. Reproducible regeneration from long-term callus cultures. Plant Cell Rep 6:163–166.

    Article  Google Scholar 

  60. Gupta PK and Durzan DJ (1985) Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4:177–179.

    Article  CAS  Google Scholar 

  61. Gupta PK and Durzan DJ (1987) Micropropagation and phase specifity in mature, elite Douglas fir. J Amer Soc Hort Sci 112(6):969–971.

    Google Scholar 

  62. Hakman L, Fowke LC, von Arnold S, and Eriksson T (1985) The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci 38:53–59.

    Article  Google Scholar 

  63. Hakman I and von Arnold S (1985) Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce). J Plant Physiol 121:149–158.

    Article  CAS  Google Scholar 

  64. Hakman I and Fowke LC (1987a) Somatic embryogenesis in Picea glauca (white spruce) and Picea mariana (black spruce). Can J Bot 65:656–659.

    Article  Google Scholar 

  65. Hakman I and Fowke LC (1987b) An embryogenic cell suspension culture of Picea glauca (White spruce). Plant Cell Rep 6:20–22.

    Article  Google Scholar 

  66. Harry IS, Thompson MR, Lu C-Y, and Thorpe TA (1987) In vitro plantlet formation from embryonic explants of eastern white cedar (Thuja occidentalis L.) Tree Physiol 3:273–283.

    Article  PubMed  CAS  Google Scholar 

  67. Harry IS, Thompson MR, and Thorpe TA (1991) Regeneration of plantlets from mature embryos of Western larch. In Vitro Cell Dev Biol 27P:89–98.

    Google Scholar 

  68. Hart JW (1987) Light and plant growth. Allen & Unwin Publ., London, pp. 204.

    Google Scholar 

  69. Horgan K and Aitken J (1981) Reliable plantlet formation from embryos and seedling shoot tips of radiata pine. Physiol Plant 53:170–175.

    Article  CAS  Google Scholar 

  70. Ishii K (1986) In vitro plantlet formation from adventitious buds on juvenile seedlings of Hinoki cypress (Chamaecyparis obtusa). Plant Cell, Tissue Organ Culture 7:247–255.

    Article  CAS  Google Scholar 

  71. Isikawa H (1974) In vitro formation of adventitious buds and roots on the hypocotyl of Cryptomeria japonica. Bot Mag 87:73–77.

    Article  Google Scholar 

  72. Jelaska S, Kolevska-Pletikapic B, and Vidakovic M (1981) Bud regeneration in Pinus nigra embryo and seedling tissue culture. In: Colloque Inter. Sur La Culture in vitro des Essences Forestieres, France, pp. 159-166.

    Google Scholar 

  73. John A and Murray BW (1981) Micropropagation of sitka spruce (Picea sitchensis (Bong.) Carr.). In: Colloque Inter. Sur. La Culture in vitro des Essences Forestieres, France, pp. 65-70.

    Google Scholar 

  74. John A and Webb KJ (1987) Sitka spruce (Picea sitchensis (Bong.) Carr.). In: Bonga JM and Durzan DJ (Eds.) Cell and Tissue Culture in Forestry, Martinus Nijhoff Publishers, Dordrecht, pp. 30–41.

    Chapter  Google Scholar 

  75. Johnson CH and Hastings JW (1986) The elusive mechanism of the circadian clock. American Scientist 74:29–36.

    Google Scholar 

  76. Kadkade PG and Jopson H (1978) Influence of light on organogenesis from the embryo-derived callus of Douglas fir (Pseudotsuga menziesii). Plant Sci Lett 13:67–73.

    Article  Google Scholar 

  77. Karnosky DF, Diner AM, and Mickler RA (1984) Micropropagation of juvenile jack pine and European larch. In: Proc Int Symp Recent Adv in Forest Biotech, Traverse City, Michigan, pp. 69-74.

    Google Scholar 

  78. Kaul K (1987) Plant regeneration from cotyledon-hypocotyl explants of Pinus strobus L. Plant Cell Rep 6:5–7.

    Article  Google Scholar 

  79. Keathley DE (1984) Micropropagation of mature spruce. Proc Int Symp Recent Advv in Forest Biotech, Traverse City, Michigan, pp. 58-63.

    Google Scholar 

  80. Klein RM (1973) Determining radiant energy in different wavelengths present in white light. HortScience 8:210–211.

    Google Scholar 

  81. Kirby EG and Schalk ME (1982) Surface structural analysis of cultured cotyledons of Douglas-fir. Can J Bot 60(12):2729–2733.

    Article  Google Scholar 

  82. Kolevska-Pletikapic B, Jelaska S, Berljak J, and Vidakovic M (1983) Bud and shoot formation in juvenile tissue culture of Pinus nigra. Silvae Genetica 32:115–119.

    Google Scholar 

  83. Kolevska-Pletikapic B and Krsnik-Raol B (1984) Analysis of adventitious bud formation in Pinus nigra Arn. embryo culture. Acta Bot 43:49–57.

    Google Scholar 

  84. Kummerow J (1966) Vegetative propagation of Pinus radiata by means of needle fascicles. For Sci 12:391–398.

    Google Scholar 

  85. Kurtz ML, Webb DT, and Vidaver WE (1989) Micropropragation of yellow cedar (Chamaecyparis nootkatensis). Plant Cell Tissue Organ Culture 18:297–312.

    Article  Google Scholar 

  86. Laine E, David H, and David A (1988) Callus formation from cotyledon protoplasts of Pinus oocarpa and Pinus patula. Physiol Plant 72:374–378.

    Article  CAS  Google Scholar 

  87. Laliberte S and Lalonde M (1988) Sustained caulogenesis in callus cultures of Larix × eurolepis initiated from short shoot buds of a 12-year-old tree. Amer J Bot 75(6):767–777.

    Article  Google Scholar 

  88. Larcher W (1980) Physiological Plant Ecology. 2nd Ed. Springer-Verlag, Berlin 303 pp.

    Book  Google Scholar 

  89. Lu C-Y and Thorpe TA (1987) Somatic embryogenesis and plantlet regeneration in cultured immature embryos of Picea glauca. J Plant Physiol 128:297–302.

    Article  CAS  Google Scholar 

  90. Mapes MO, Young PM, and Zaerr JB (1981) Multiplication in vitro du Douglas (Pseudotsuga menziesii) par induction precoce d’un bourgeonnement adventif et axillaire. In: Colloque Inter. Sur la Culture in vitro des Essences Forestieres, France, pp. 109–114.

    Google Scholar 

  91. Mehra-Palta A, Smeltzer RH, and Mott RL (1978) Hormonal control of induced organogenesis. Experiments with excised plant parts of loblolly pine. Tappi 61(l):37–40.

    CAS  Google Scholar 

  92. Minocha SC (1980) Callus and adventitious shoot formation in excised embryos of white pine (Pinus strobus). Can J Bot 58:366–370.

    Article  CAS  Google Scholar 

  93. Misson JP, Coumans M, Giot-Wirgot P, and Gaspar T (1982) Induction of adventitious buds on buds of Picea pungens grown in vitro. Z Pflanzenphysiol Bd 107:161–167.

    Google Scholar 

  94. Mohammed GH and Vidaver WE (1988) Root production and plantlet development in tissue-cultured conifers. Plant Cell, Tissue Organ Culture 14:137–160.

    Article  Google Scholar 

  95. Mohammed GH and Patel KR (1989) Tissue culture propagation of Douglas-fir. New Forests 3:125–139.

    Article  Google Scholar 

  96. Momot TS and Smirnov AM (1979) Organogenesis from various organs of the Siberian and Dahur larch (Larix sibirica Maxim, and L. dahurica Turcz.) and yellow pine (Pinus ponderosa Dougl.) cultured in vitro. Sov Plant Physiol 78:758–761.

    Google Scholar 

  97. Momot TS (1981) Differentiation of pinceana pinyon pine (Pinus pithyusa Stev.) plants in culture in vitro. Tsitol i Gen 15(6):54–57.

    Google Scholar 

  98. Monteuuis O (1987) In vitro meristem culture of juvenile and mature Sequoiadendron giganteum. Tree Physiol 3:265–272.

    Article  PubMed  Google Scholar 

  99. Mott RL and Amerson HV (1981a) Tissue culture plantlets produced from Pinus monticola embryonic materials. For Sci 27(2):299–304.

    Google Scholar 

  100. Mott RL and Amerson HV (1981b) A tissue culture process for the clonal production of loblolly pine plantlets. NC Ag Res Serv Tech Bull 271:1–14.

    Google Scholar 

  101. Mott RL and Amerson RH (1984) Role of tissue culture in loblolly pine improvement. Proc Int Sym Adv Forest Biotech, Traverse City, Michigan, pp. 24-36.

    Google Scholar 

  102. Mudge KW (1986) Micropropagation of mugo pine from embryonic and seedling explants. HortScience 21(2):298–299.

    Google Scholar 

  103. Murashige T (1974) Plant propagation through tissue cultures. Ann Rev Plant Physiol 25: 135–166.

    Article  CAS  Google Scholar 

  104. Nagmani R and Bonga J (1986) Embryogenesis in subcultered callus of Larix decidua. Can J For Res 1088-1091.

    Google Scholar 

  105. Nagmani R, Becwar MR, and Wann SR (1987) Single-cell origin and development and somatic embryos in Picea abies (L.) Karst. (Norway spruce) and P. glauca (Moench) Voss (white spruce). Plant Cell Rep 6:1257–159.

    Google Scholar 

  106. Patel KR and Berlyn GP (1982) Genetic instability of multiple buds of Pinus coulteri regenerated from tissue culture. Can J For Res 12:93–101.

    Article  Google Scholar 

  107. Patel KR and Thorpe TA (1984) In vitro differentiation of plantlets from embryonic explants of lodgepole pine (Pinus contorta Dougl. ex Loud.). Plant Cell, Tissue Organ Culture 3:131–142.

    Article  Google Scholar 

  108. Patel KR and Thorpe TA (1986) In vitro regeneration of plantlets from embryonic and seedling explants of Engelmann spruce (Picea engelmannii Parry). Tree Physiol. 1:289–301.

    Article  PubMed  CAS  Google Scholar 

  109. Patel KR, Kim H-R, and Thorpe TA (1986) Plantlet formation in pitch pine (Pinus rigida Mill.) by tissue culture methods. For Ecol Manage 15:147–160.

    Article  Google Scholar 

  110. Perez-Bermudez P and Sommer HE (1987) Factors affecting adventitious bud induction in Pinus elliottii (Engelm.) embryos cultured in vitro. Plant Cell, Tissue Organ Culture 11:25–335.

    Article  CAS  Google Scholar 

  111. Rancillac M (1981) Perspective d’ application des cultures d’organes in vitro a la multiplication vegetative du Pin maritime, Pinus pinaster Sol. Ann Sci Forest 38(1):55–70.

    Article  CAS  Google Scholar 

  112. Rancillac M, Faye M, and David A (1982) In vitro rooting of cloned shoots in Pinus pinaster. Physiol Plant 56:97–101.

    Article  CAS  Google Scholar 

  113. Reilly K and Washer J (1977) Vegetative propagation of radiata pine by tissue culture: plantlet formation from embryonic tissue. NZ J For Sci 7(2): 199–206.

    CAS  Google Scholar 

  114. Roberts DR, Sutton BCS, and Flinn BS (1990) Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can J Bot 68:1086–1090.

    Article  Google Scholar 

  115. Romberger JA, Varnell RJ, and Tabor CA (1970) Culture of apical meristems and embryonic shoots of Picea abies — approach and techniques. USDA FS Tech Bull 1409:1–30.

    Google Scholar 

  116. Rumary C and Thorpe TA (1984) Plantlet formation in black and white spruce. I. In vitro techniques. Can J For Res 14:10–16.

    Article  Google Scholar 

  117. Selby C and Harvey BMR (1985) The influence of natural and in vitro bud flushing on adventitious bud production in sitka spruce (Picea sitchensis (Bong.) Carr.) bud and needles cultures. New Phytol 100:549–562.

    Article  Google Scholar 

  118. Simola LK and Huhtinen O (1986) Growth, differentiation, and ultrastructure of microspore callus of Picea abies as affected by nitrogenous supplements and light. NZ J For Sci 16:357–368.

    Google Scholar 

  119. Smith DR and Thorpe TA (1975) Root Initiation of cuttings of Pinus radiata seedlings. J Exp Bot 26(91): 184–192.

    Article  Google Scholar 

  120. Smith DR (1986) Radiata pine (Pinus radiata D. Don). In: YPS Bajaj (Ed.) Biotechnology in Agriculture and Forestry. Vol. 1: Trees I, Springer-Verlag, Berlin, pp. 274–291.

    Google Scholar 

  121. Smith H (1982) Light quality, photoperception, and plant strategy. Ann Rev Plant Physiol 33:481–518.

    Article  CAS  Google Scholar 

  122. Smith H and Whitelam GC (1990) Phytochrome, a family of photoreceptors with multiple roles. Plant Cell and Environ 13:695–707.

    Article  CAS  Google Scholar 

  123. Sommer H, Brown CL, and Kormanik PP (1975) Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue cultured in vitro. Bot Gaz 136(2): 196–200.

    Article  Google Scholar 

  124. Stiff CM, Wenny DL, Roberts LW, Olson JR, and LeTourneau DJ (1988) Micropropagation of western white pine using needle fascicles. Proc Tenth North American Forest Biology Workshop, BC, Canada, pp. 133-139.

    Google Scholar 

  125. Teasdalee RD and Rugini E (1983) Preparation of viable protoplasts from suspension-cultured loblolly pine (Pinus taeda) cells and subsequent regeneration to callus. Plant Cell, Tissue Organ Culture 2:253–2

    Article  Google Scholar 

  126. Thomas M, Duhoux E, and Vazart J (1977) In vitro organ initiation in tissue culture of Biota (Thuja) orientalis. Plant Sci Letters 8:395–400.

    Article  CAS  Google Scholar 

  127. Thompson DG and Zaerr JB (1981) Induction of adventitious buds on cultured shoot tips of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). In: Colloque Inter. Sur la Culture in vitro des Essences Forestieres, France, pp. 167–174.

    Google Scholar 

  128. Torbio M and Pardos JA (1989) Scots pine (Pinus sylvestris L.) In: Bajaj YPS (Ed.) Biotechnology in Agriculture and Forestry Trees II. pp. 479-506.

    Google Scholar 

  129. Tranvan H and Thomas M (1981) Influence hormonale sur l’organogenese in vitro des cotyledons dur Pinus sylvestris. In: Colloque Int Sur la Culture in vitro des Essences Forestieres, France, pp. 153-154.

    Google Scholar 

  130. Verhagen SA and Wann SR (1989) Norway spruce somatic embryogenesis: high-frequency initiation from light cultured mature embryos. Plant Cell Tissue Organ Cult 16:103–111.

    Article  Google Scholar 

  131. Villalobos VM, Leung DWM, and Thorpe TA (1984a) Light-cytokinin interaction in shoot formation in cultured cotyledon explants of radiata pine. Physiol Plant 61:497–504.

    Article  CAS  Google Scholar 

  132. Villalobos VM, Oliver MJ, Yeung EC, and Thorpe TA (1984b) Cytokinin-induced switch in development in excised cotyledons of radiata pine cultured in vitro. Physiol Plant 61:483–489.

    Article  CAS  Google Scholar 

  133. Villalobos VM, Yeung EC and Thorpe TA (1985) Origin of adventitious shoots in excised radiata pine cotyledons cultured in vitro. Can J Bot 63:2172–2176.

    Article  Google Scholar 

  134. von Arnold S and Eriksson T (19788) Induction of adventitious buds on embryos of Norway spruce in vitro. Physiol Plant 44:283–287.

    Article  Google Scholar 

  135. von Arnold S and Eriksson T (1979) Induction of adventitious buds on buds of Norway spruce (Picea abies) gronw in vitro. Physiol Plant 45:29–34.

    Article  Google Scholar 

  136. von Arnold S and Eriksson T (1981) In vitro studies of adventitious shoot formation in Pinus contorta. Can J Bot 59:870–874.

    Article  Google Scholar 

  137. von Arnold S (1982) Factors influencing formation, development and rooting of adventitious shoots from embryos of Picea abies (L.) Karst. Plant Sci Lett 27:275–287.

    Article  Google Scholar 

  138. von Arnold S (1984) Importance of genotype on the potential for in vitro adventitious bud production of Picea abies. Forest Sci 30(2):314–318.

    Google Scholar 

  139. von Arnold S and Eriksson T (1985) Initial stages in the course of adventitious bud formation on embryos of Picea abies. Physiol Plant 64:41–47.

    Article  Google Scholar 

  140. von Arnold S and Gronroos R (1986) Anatomical changes and peroxidase activity after cytokinin treatments inducing adventitious bud formation on embryos of Picea abies. Bot Gaz 147:425–431.

    Article  Google Scholar 

  141. von Arnold S and Eriksson T (1986) Norway spruce (Picea abies L.) In: Bajaj YPS (Ed.) Biotechnology in Agriculture and Forestry, Vol. 1: Trees I, Springer-Verlag Berlin, pp. 291–310.

    Google Scholar 

  142. von Arnold S (1987) Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.) Karst. J Plant Physiol 128:233–244.

    Article  Google Scholar 

  143. Wann Sr, Johnson MA, Noland TL, and Carlson JA (1987) Biochemical difference between embryogenic and non-embryogenic callus of Picea abies (L.) Karts. Plant Cell Rep 6:39–42.

    Article  CAS  Google Scholar 

  144. Washer J, Reilly KJ, and Barnett JR (1977) Differentiation in Pinus radiata callus culture: The effect of nutrients. NZJ For Sci 7(3):321–328.

    Google Scholar 

  145. Webb DT and Santiago OD (1983) Cytokinin induced bud formation on carribean pine (Pinus caribaea Morlet) embryos in vitro. Plant Sci Lett 32:17–21.

    Article  CAS  Google Scholar 

  146. Webb DT, Flinn BS, and Georgis W (1988) Micropropagation of eastern white pine (Pinus strobus L.) Can J Bot 18:1570–1580.

    Google Scholar 

  147. Webb DT, Webster F, Flinn BS, Roberts DR, and Ellis DD (1989) Factors influencing the induction of embryogenic and caulogenic callus from embryos of Picea glauca and P. engelmanii. Can J For Res 19:1303–1308.

    Article  Google Scholar 

  148. Webb KJ and Street HE (1977) Morphogenesis in vitro of Pinus and Picea. Acta Hort 78:259–269.

    Google Scholar 

  149. Winton LL and Verhagen SA (1977) Shoots from Douglas-fir cultures. Can J Bot 55: 1246–1250.

    Article  Google Scholar 

  150. Yeung EC, Aitken J, Biondi S, and Thorpe TA (1981) Shoot histogenesis in cotyledon explants of radiata pine. Bot Gaz 142(4):494–501.

    Article  Google Scholar 

  151. Zel J, Gogala N, and Camloh M (1988) Micropropagation of Pinus sylvestris. Plant Cell, Tissue Organ Culture 14:169–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ellis, D.D., Webb, D.T. (1993). Light regimes used in conifer tissue culture. In: Ahuja, M.R. (eds) Micropropagation of Woody Plants. Forestry Sciences, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8116-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8116-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4169-2

  • Online ISBN: 978-94-015-8116-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics