Skip to main content

Transport processes in wood

  • Chapter

Abstract

The movement of fluids through wood is complicated by the fact that the coarse capillary system is interconnected via smaller openings. The favoured path for the movement of fluids through wood varies according to the fluid, the nature of the driving force (e.g. pressure, moisture gradient) as well as being sensitive to variations in wood structure. Possible flow paths are shown in Fig. 5.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bolton, A.J. and Petty, J.A. (1977) Variation of susceptibility to aspiration of bordered pits in conifer wood. J Exper. Bot., 28 (105), 935–41.

    Article  Google Scholar 

  • Booker, R.E. (1989) Hypothesis to explain the characteristic appearance of aspirated pits. Proc. 2nd Pacific Regional Wood Anat. Conf., Oct. 1989, For. Prod. Res. Develop. Inst., Laguna, Philippines.

    Google Scholar 

  • Booker, R.E. (1990) Changes in transverse wood permeability during the drying of Dacrydium cupressinum and Pinus radiata. NZ J. For. Sci., 20 (2), 231–44.

    Google Scholar 

  • Booker, R.E. and Kininmonth, J.A. (1978) Variation in longitudinal permeability of green radiata pine wood. NZ J. For. Sci., 8 (2), 295–308.

    Google Scholar 

  • Bramhall, G. (1979) Sorption diffusion in wood, Wood Sci., 12 (1), 3–13.

    Google Scholar 

  • CIBSE (1986) CIBSE Guide: Section A3 Chartered Inst. Build. Eng; London.

    Google Scholar 

  • Kollman, F.F.P. and Côté, W.A. (1968) Principles of Wood Science and Technology: 1. Solid Wood, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • MacLean, J.D. (1930) Studies of heat conduction in wood: results of steaming green round southern pine timbers, Proc. 26th Ann. Meet. Am. Wood Preserv. Assoc., pp. 197–219.

    Google Scholar 

  • MacLean, J.D. (1932) Studies of heat conduction in wood: results of steaming green sawed southern pine timbers, Proc. 28th Ann. Meet. Am. Wood Preserv. Assoc., pp. 303–30.

    Google Scholar 

  • MacLean, J.D. (1941) Thermal conductivity of wood. Heat Piping Air Cond., 13 (6), 380–91.

    Google Scholar 

  • Massey, B.S. (1986) Mechanics of Fluids 6th edn, Van Nostrand Reinhold, London.

    Google Scholar 

  • Petty, J.A. (1972) The aspiration of bordered pits in conifer wood. Proc. Royal Soc., London B, 181 (1065), 395–406.

    Article  Google Scholar 

  • Petty, J.A. (1978) Fluid flow through the vessels of birch wood. J. Exper. Bot., 29 (113), 1463–9.

    Article  Google Scholar 

  • Petty, J.A. (1981). Fluid flow through the vessels and intervascular pits of sycamore wood. Holzforsch, 35 (5), 213–16.

    Article  Google Scholar 

  • Petty, J.A. and Puritch, G.S. (1970) The effects of drying on the structure and permeability of the wood of Abies grandis. Wood Sci. Technol., 4 (2), 140–54.

    Article  Google Scholar 

  • Preston, R.D. (1974) The Physical Biology of Plant Walls, Chapman & Hall, London.

    Google Scholar 

  • Siau, J.F. (1984) Transport Processes in Wood, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Skaar, C. and Siau, J.F. (1981) Thermal diffusion of bound water in wood. Wood Sci. Technol., 15, 105–12.

    Article  Google Scholar 

  • Stamm, A.J. (1959) Bound-water diffusion into wood in the fibre direction. For. Prod. J., 9 (1), 27–32.

    CAS  Google Scholar 

  • Stamm, A.J. (1964) Wood and Cellulose Science, Ronald Press, New York.

    Google Scholar 

  • Stamm, A.J. (1967a) Movement of fluids in wood — Part 1: Flow of fluids in wood. Wood Sci. Technol., 1 (2), 122–41.

    Article  Google Scholar 

  • Stamm, A.J. (1967b) Movement of fluids in wood — Part 2: Diffusion. Wood Sci. Technol., 1 (3), 205–30.

    Google Scholar 

  • Stanish, M.A., Schajer, G.S. and Kayihan, F. (1986) A mathematical model of drying for hygroscopic porous media. Am. Inst. Chem. Eng. J., 32 (8), 1301–11.

    Article  CAS  Google Scholar 

  • Thomas, R.J. and Kringstad, K.P. (1971) The role of hydrogen bonding in pit aspiration. Holzforsch, 25 (5), 143–9.

    Article  CAS  Google Scholar 

  • Tyree, M.T. and Dixon, M.A. (1983) Cavitation events in Thuja occidentalis L.? Ultrasonic acoustic emissions from the sapwood can be measured. Plant Physiol., 72 (4), 1094–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 J.C.F. Walker

About this chapter

Cite this chapter

Langrish, T.A.G., Walker, J.C.F. (1993). Transport processes in wood. In: Primary Wood Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8110-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8110-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-8112-7

  • Online ISBN: 978-94-015-8110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics