Skip to main content

Time-Resolved Diagnostics of Excimer Laser-Generated Ablation Plasmas used for Pulsed Laser Deposition

  • Chapter
Excimer Lasers

Part of the book series: NATO ASI Series ((NSSE,volume 265))

Abstract

Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Dijkkamp, T. Venkatesan, X. D. Wu, S. A. Shaheen, N. Jisrawi, Y. H. Min-Lee, W. I. McLean, and M. Croft, Appl. Phys. Lett. 51, 619 (1987).

    Article  CAS  Google Scholar 

  2. Laser Ablation for Materials Synthesis, ed. by D. C. Paine and J. C. Bravman, Mat. Re Soc. Symp. Proc, Vol. 191 (1990).

    Google Scholar 

  3. Laser Ablation: Mechanisms and Applications, ed. by J. C. Miller and R. F. Haglund Springer-Verlag, Heidelberg, (1991).

    Google Scholar 

  4. Laser Ablation of Electronic Materials: Basic Mechanisms and Applications, ed. b E. Fogarassy and S. Lazare, North Holland (1992).

    Google Scholar 

  5. Laser Ablation in Materials Processing: Fundamentals and Applications, ed. b B. Braren, J.J. Dubowski, and D. P. Norton, Mat. Res. Soc. Symp. Proc, Vol. 285 (1993).

    Google Scholar 

  6. Laser Ablation II: Mechanisms and Applications, ed. by J. C. Miller and D.B. Geohegai AIP Conference Proceedings 288, (1993).

    Google Scholar 

  7. Pulsed Laser Deposition of Thin Films, ed. by D. B. Chrisey and G. K. Hubler, (Wilej Interscience Publisher), 1993, (in press).

    Google Scholar 

  8. J. T. Cheung, and H. Sankur, CRC Critical Review in Solid State and Materials Science 15, 63 (1988) and references cited therein.

    Article  CAS  Google Scholar 

  9. J. F. Ready, Effects of High-Power Laser Radiation, Academie, London (1971).

    Google Scholar 

  10. T. P. Hughes, Plasmas and Laser Light, Wiley, New York (1975).

    Google Scholar 

  11. G. Bekefi, Principles of Laser Plasmas, New York, (1976).

    Google Scholar 

  12. L. J. Radziemski, D. A. Cremers, Laser Induced Plasmas and Applications, Marc( Dekker, Inc., New York, (1989).

    Google Scholar 

  13. See review by D. B. Geohegan, chapter in Reference 7.

    Google Scholar 

  14. D. B. Geohegan and D. N. Mashburn, p. 211 in Reference 2.

    Google Scholar 

  15. D. B. Geohegan, p.28 in Reference 3.

    Google Scholar 

  16. D. B. Geohegan, pp. 73–88 in Reference 4.

    Google Scholar 

  17. D. B. Geohegan, p. 27 in Reference 5.

    Google Scholar 

  18. D. B. Geohegan, in Reference 6 (in press).

    Google Scholar 

  19. D. B. Geohegan, p. 557 in Surf ace Chemistry and Beam-Solid Interactions, Mat. Res. Soc. Symp. Proc. 201 (1991).

    Google Scholar 

  20. D. B. Geohegan, Appl. Phys. Lett. 62, 1463 (1993).

    Article  CAS  Google Scholar 

  21. D. B. Geohegan, Thin Solid Films 220, 138 (1992).

    Article  CAS  Google Scholar 

  22. D. B. Geohegan, Appl. Phys. Lett., 60, 2732 (1992).

    Article  CAS  Google Scholar 

  23. D. B. Geohegan and D. N. Mashburn, Appl. Phys. Lett. 55, 2345 (1989).

    Article  CAS  Google Scholar 

  24. A. D. Akhsakhalyan, Yu. A. Bityurin, S. V. Gaponov, A. A. Gudkov, and V. I. Luchin, Sov. Phys. Tech. Phys. 27, 969, (1982).

    Google Scholar 

  25. Ya. B. Zel’dovich and Yu. P. Raizer, p. 94. in Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Vol. 1, Academie Press, New York, 1966.

    Google Scholar 

  26. P. E. Dyer, A. Issa, and P. H. Key, Appl. Phys. Lett. 57, 186 (1990).

    Article  CAS  Google Scholar 

  27. P. E. Dyer, A. Issa, and P. H. Key, Appl. Surf. Sci. 46, 89 (1990).

    Article  CAS  Google Scholar 

  28. R. M. Gilgenbach and P. L. G. Ventzek, Appl. Phys. Lett. 58, 1597 (1991).

    Article  CAS  Google Scholar 

  29. P. E. Dyer, S. R. Farrar, A. Issa, and P. H. Key, p.101 in Reference 4.

    Google Scholar 

  30. P. E. Dyer, and J. Sidhu, J. Appl. Phys. 64, 4657 (1988).

    Article  CAS  Google Scholar 

  31. G. Kubiak in Reference 6.

    Google Scholar 

  32. H. Dupendant, J. P. Gavigan, D. Givord, A. Lienard, J. P. Rebouillat, and Y. Souche, Appl. Surf. Sci. 43, 369 (1989).

    Article  CAS  Google Scholar 

  33. K. Murakami, p.125 in Reference 4.

    Google Scholar 

  34. A. A. Ivanov, S. G. Galkin, A. V. Kuznetsov, A. P. Menushenkov, Physica C 180, 69 (1991).

    Article  CAS  Google Scholar 

  35. G. Koren, A. Gupta, R. J. Baseman, M. I. Lutwyche, and R. B. Laibowitz, Appl. Phys. Lett. 56, 2144 (1990).

    Article  CAS  Google Scholar 

  36. Deepika Bhattacharya, R. K. Singh, and P. H. Holloway, J. Appl. Phys. 70, 5433 (1991).

    Article  CAS  Google Scholar 

  37. R. Kelly, J. J. Cuomo, P. A. Leary, J. E. Rothenberg, B. E. Braren and C. F. Aliotta, Nucl. Instrum. Methods B 9, 329 (1985).

    Article  Google Scholar 

  38. R. K. Singh, D. Bhattacharya, and J. Narayan, Appl. Phys. Lett. 57, 2022 (1990).

    Article  CAS  Google Scholar 

  39. Eric A. Rohlfing, J. Chem. Phys. 89, 6103 (1988).

    Article  CAS  Google Scholar 

  40. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).

    Article  CAS  Google Scholar 

  41. E. A. Rohlfing, D. M. Cox, A. Kaldor, J. Chem. Phys. 81, 3322 (1984).

    Article  CAS  Google Scholar 

  42. R. E. Haufler, Y. Chai, L. P. F. Chibante, J. Conceicao, C. Jin, L.-S. Wang, S. Maruyama, R. E. Smalley, Mater. Res. Soc. Symp. Proc. 206, 627 (1990).

    Article  Google Scholar 

  43. Y. Chai, T. Guo, C. Jin, R. E. Haufler, L.P.F. Chibante, J. Fure, L. Wang, J. M. Alford, R. E. Smalley, J. Phys. Chem. 95, 7564 (1991).

    Article  CAS  Google Scholar 

  44. T. Guo, C. Jin, R. E. Smalley, J. Phys. Chem. 95, 4948 (1991).

    Article  CAS  Google Scholar 

  45. A. A. Puretzky, D. B. Geohegan, R. E. Haufler, R. L. Hettich, X.-Y. Zheng, and R. N. Compton, in Reference 6.

    Google Scholar 

  46. D. B. Geohegan, A. A. Puretzky, R. L. Hettich, X.-Y. Zheng, R. E. Haufler, and R. N. Compton, accepted for the proceedings of the IUMRS-ICAM Conference,Tokyo, Japan. (Aug. 31-Sept. 4, 1993) (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Geohegan, D.B. (1994). Time-Resolved Diagnostics of Excimer Laser-Generated Ablation Plasmas used for Pulsed Laser Deposition. In: Laude, L.D. (eds) Excimer Lasers. NATO ASI Series, vol 265. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8104-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8104-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4395-5

  • Online ISBN: 978-94-015-8104-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics