A wide range of organic compounds including aldehydes, VOC and VVOC have been shown or suspected to play a role as one of the multiple causes of the ’Sick Building Syndrome’. Methods for their measurement consist of a sampling step and a separation and identification step. Of these steps sampling needs to be designed according to the specific requirements of the indoor environment, whereas separation and identification methods are common to many fields of environmental analysis. This paper discusses mostly sorbent sampling, gives some information on whole air sampling and describes methods for sample transfer to the separation and identification equipment.


High Performance Liquid Chromatography Volatile Organic Compound Solid Sorbent Indoor Pollutant Sorbent Sampling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. De Bortoli, M., Mølhave, L, Thorsen, M. A., and Ullrich, D. (1986). ’European interlaboratory comparison of passive samplers for organic vapour monitoring in indoor air’, Report nr. EUR 10487 EN, Commission of the European Communities, Luxembourg.Google Scholar
  2. De Bortoli, M., Knöppel H., Pecchio, E., and Vissers, H. (1989). ’Performance of a thermally desorbable diffusion sampler for personal — and indoor air monitoring’, Environ. Int. 15, 427–434.CrossRefGoogle Scholar
  3. De Bortoli, M., and Colombo, A. (1992). ’Characterization of organic emissions from indoor sources’, this volume, pp.Google Scholar
  4. Health and Safety Executive, (1991). ’Methods for the determination of hazardous substances: Volatile organic compounds in air; Laboratory method using pumped solid sorbent tubes, thermal desorption and gas chromatography’, MDHS 72, HSE, London.Google Scholar
  5. Knöppel, H. (1982). ’Mass spectrometry in environmental organic analysis’, Europ. Spetroscopy News 40, 29–34.Google Scholar
  6. Knöppel, H., and De Bortoli, M. (1992). ’Organic indoor pollution and complaints on indoor air quality’, in G. Abritti and G. Muzi (eds.), Indoor Air Quality and Health, Monduzzi Editore, Bologna, pp. 181–189.Google Scholar
  7. Lewis, R. G., Mulik, J. D., Coutant, R. W., Wooten, G. W., and McMillin, C. R. (1985). ’Thermally desorbable passive sampling device for volatile organic chemicals in ambient air’, Anal. Chem. 57, 214–219.CrossRefGoogle Scholar
  8. Matthews, T. G., Thompson, C. V., Wilson, D. L., and Hawthorne, A. R. (1989). ’Air velocities inside domestic environments: an important parameter in the study of indoor air quality and climate’, Environ. Int. 15, 545–550.CrossRefGoogle Scholar
  9. McLenny, W. A., Pleil, J. D., Holdren, M. W., and Smith, R. N., 1984. ’Automated cryogenic preconcentration and gas chromatographic determination of volatile organic compounds in air’, Anal. Chem. 56, 2947–2951.CrossRefGoogle Scholar
  10. Namieśnik, J. (1988). ’Preconcentration of gaseous organic pollutants in the atmosphere’, Talanta 35, 567–587.PubMedCrossRefGoogle Scholar
  11. Oliver, K. D., Pleil, J. D., and McClenny, W. A. (1986). ’Sample integrity of trace level volatile organic compounds in ambient air stored in SUMMA® polished canisters’, Atmos. Environ. 20, 1403–1411.CrossRefGoogle Scholar
  12. Pellizzari, E. D., Demian, B., and Krost, K. J. (1984). ’Sampling of organic compounds in the presence of reactive inorganic gases with Tenax-GC’, Analy. Chem. 56, 793–798.CrossRefGoogle Scholar
  13. Pellizzari, E. D., and Krost, K. J. (1984). ’Chemical transformations during ambient air sampling for organic vapors’, Anal. Chem. 56,1813–1819.CrossRefGoogle Scholar
  14. Rothweiler, H., Wäger, P. A., and Schlatter, C. (1991). ’Comparison of Tenax TA and Carbotrap for sampling and analysis of volatile organic compounds in air’, Atmos. Environ. 25B, 231–235.Google Scholar
  15. Schlitt, H., Knöppel, H., Versino, B., Peil, A., Schauenburg, H., and Vissers, H. (1980). ’Organics in air: sampling and identification’, in Sampling and Analysis of Toxic Organics in the Atmosphere, American Society for Testing and Materials, Philadelphia, Pa., pp. 22–35.CrossRefGoogle Scholar
  16. Schmidbauer, N., and Oehme, M. (1988). ’Comparison of solid adsorbent and stainless steel canister sampling for very low ppt-concentrations of aromatic compounds (≥ C6) in Ambient Air from Remote Areas’, Fres. Z. Analy. Chem. 331,14–19.Google Scholar
  17. Seifert, B. (1992). ’Organic indoor pollutants: sources, species, and concentrations’, this volumeGoogle Scholar
  18. Shirey, R. E., Hazard, S., and Cole, S. B. (1991). ’A systematic comparison of trap adsorbents for analyses of volatile organics in drinking water and wastewater’, Pittsburgh Conference.Google Scholar
  19. Spicer, C. W. (1986). ’Intercomparison of sampling techniques for toxic organic compounds in indoor air’, in Proc. of the EPA/APCA Symposium on Measurement of Toxic Air Pollutants, EPA Report No. 600/9–86-013, pp. 45–60.Google Scholar
  20. Walling, J. F. (1984). ’The utility of distributed air volume sets when sampling ambient air using solid sorbents’, Atmos. Environ. 18, 855–859.CrossRefGoogle Scholar
  21. Walling, J. F., Bumgarner, J. E., Driscoll, D. J., Morris, C. M., Riley, A. E., and Wright, L. H. (1986). ’Apparent reaction products desorbed from tenax used to sample ambient air’, Atmos. Environ. 20, 51–57.CrossRefGoogle Scholar
  22. World Health Organization. (1989). ’Indoor air quality: organic pollutants’, EURO Reports and Studies No. 111, WHO, Regional Office for Europe, Copenhagen.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • H. Knöppel
    • 1
  1. 1.Joint Research Centre, Environment InstituteCommission of the European CommunitiesIspraItaly

Personalised recommendations