Incorporating Origins into Evolutionary Theory

  • Daniel R. Brooks
Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 130)


Evolutionary theory is experiencing a period of close scrutiny. Some authors assert that evolutionary theory is essentially complete (e.g. Charlesworth et al., 1982; Stebbins and Ayala, 1981; Buss, 1987), and others argue for a replacement theory that is independent of Darwinian principles. What is needed, however, are approaches that try to integrate traditional principles and research programs with new ideas that can address problems not addressed by current evolutionary theory. This is exemplified by the titles of recent texts and articles that emphasize the need to ‘expand’ (Gould, 1980), ‘finish’ (Eldredge, 1985), ‘extend’ (Wicken, 1987), or ‘unify’ (Brooks and Wiley, 1988; Brooks et al., 1989) evolutionary biology. Attempts to find common ground among these various proposals have begun (e.g. articles in Weber et al., 1988). To my mind, two concepts are common to all these proposals. The first is the feeling that there is more to evolution than changes in gene frequencies in local populations under different environmental conditions. The second is that evolutionary theory has been preoccupied with questions of maintenance rather than with questions of origin of diversity.


Evolutionary Theory Entropy Production Biological Evolution Production Rule Entropy Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brillouin, L.: 1962, Science and Information Theory. New York: Academic Press. 2nd ed.Google Scholar
  2. Brooks, D. R.: 1985, ‘Historical ecology: A new approach to studying the evolution of ecological association’, Ann. Missouri Bot. Garden, 72, 660–680.CrossRefGoogle Scholar
  3. Brooks, D. R., Collier, J., Maurer, B. A., Smith, J. D. H. and Wiley, E. O.: 1989, `Entropy and information in evolving biological systems’, Biol. Philos., 4, 407–432.CrossRefGoogle Scholar
  4. Brooks, D. R., Cumming, D. D. and LeBlond, P. H.: 1988, ‘Dollo’ s Law and the Second Law of Thermodynamics: Analogy or extension?’ in: Entropy. Information and Evolution: New Perspectives on Physical and Biological Evolution, Weber, B., Depew, D. J. and Smith J. D. (Eds.). Cambridge: MIT Press, pp. 189–224.Google Scholar
  5. Brooks, D. R., LeBlond, P. H. and Cumming, D. D.: 1984, `Information and entropy in a simple evolution model’, J. Theor. Biol., 109, 77–93.CrossRefGoogle Scholar
  6. Brooks, D. R. and McLennan, D. A.: 1991, Phylogeny, Ecology and Behavior: A Research Program in Comparative Biology. Chicago: Univ. Chicago Press.Google Scholar
  7. Brooks, D. R. and O’ Grady, R. T.: 1986, Non-equilibrium, thermodynamics and different axioms of evolution’, Acta Biotheror., 35, 77–106.CrossRefGoogle Scholar
  8. Brooks, D. R. and Wiley, E. O.: 1988, Evolution as Entropy: Toward a Unified Theory of Biology. Chicago: Univ. Chicago Press. 2nd ed.Google Scholar
  9. Buss, L.: 1987, The Evolution of Individuality. Princeton: Princeton Univ. Press.Google Scholar
  10. Chaitin, G. J.: 1975, ‘A theory of program size formally equivalent to information theory’, J. ACM, 22, 329–340.CrossRefGoogle Scholar
  11. Charlesworth, B., Lande, R. and Slatkin, M.: 1982, ‘A neo-Darwinian commentary on macroevolution’, Evolution, 36, 474–498.CrossRefGoogle Scholar
  12. Collier, J.: 1986, ‘Entropy in evolution’, Biol. Philos., 1, 5–24.CrossRefGoogle Scholar
  13. Collier, J.: 1988, ‘Supervenience and reduction in biological hierarchies’, Can. J. Philos., suppl. volume., 14, 209–234.Google Scholar
  14. Depew, D. J. and Weber, B.: 1988, ‘Consequences of nonequilibrium thermodynamics for the Darwinian tradition’, in: Entropy, Information and Evolution: New Perspectives on Physical and Biological Evolution. Weber, B., Depew, D. J. and Smith, J. D. (Eds.). Cambridge: MIT Press, pp. 317–354.Google Scholar
  15. Eldredge, N.: 1985, Unfinished Synthesis. New York: Columbia Univ. Press.Google Scholar
  16. Eldredge, N.: 1986, `Information, economics and evolution’, Ann. Rev. Ecol. Syst., 17, 351–369.CrossRefGoogle Scholar
  17. Eldredge, N. and Salthe, S. N.: 1984, ‘Hierarchy and evolution’, in: Oxford Surveys in Evolutionary Biology, Dawkins, R. and Ridley, M. (Eds.), Vol. 1, pp. 182–206.Google Scholar
  18. Emig, C. C.: 1985, ‘Relations entre l’ espace, structure dissapatrice biologique, et l’ écosysteme, structure dissapatrice écologique. C. R. Acad. Sci. Paris, 300, 323–326.Google Scholar
  19. Fink, W. L.: 1982, ‘The conceptual relationship between ontogeny and phylogeny’, Paleobiology, 8, 254–264.Google Scholar
  20. Frautschi, S.: 1982, ‘Entropy in an expanding universe’, Science, 217, 593–599.CrossRefGoogle Scholar
  21. Frautschi, S.: 1988, ‘Entropy in an expanding universe’, in: Entropy, Information and Evolution: New Perspective on Physical and Biological Evolution, Weber, B., Depew, D. J. and Smith, J. D. (Eds.). Cambridge: MIT Press, pp. 11–22.Google Scholar
  22. Gatlin, L. L.: 1972, Information Theory and the Living System. New York: Columbia Univ. Press.Google Scholar
  23. Goodwin, B. C.: 1982, ‘ Development and evolution’, J. Theor. Biol., 97, 43–55.CrossRefGoogle Scholar
  24. Goodwin, B. C.: 1985, ‘Changing from an evolutionary to a generative paradigm in biology, in: Evolutionary Theory: Paths into the Future, Pollard J. W. (Ed.). London: John Wiley & Sons, pp. 99–120.Google Scholar
  25. Gould, S. J.: 1980, `Is a new and general theory of evolution emerging?’, Paleobiology 6, 119–120.Google Scholar
  26. Hailman, J. P.: 1977, Optical Signals: Animal Communication and Light. Bloomington: Univ. Indiana Press.Google Scholar
  27. Hennig, W.: 1966, Phylogenetic Systematics. Urbana: Univ. Illinois Press.Google Scholar
  28. Kolmogorov, A. N.: 1968, ‘Logical basis for information theory and probability theory’, IEEE Transactions on Information Theory, 14, 662–664.CrossRefGoogle Scholar
  29. Landsberg, P. T.: 1984a, `Is equilibrium always an entropy maximum?’, J. Stat. Physics, 35, 159–169.CrossRefGoogle Scholar
  30. Landsberg, P. T.: 1984b, ‘Can entropy and “order” increase together?’, Physics Letters, 102A, 171–173.Google Scholar
  31. Lauder, G. V.: 1981, ‘Form and function: Structural analysis in evolutionary biology’, Paleobiology, 7,430–442.Google Scholar
  32. Lauder, G. V.: 1982, ‘Historical biology and the problem of design’, J. Theor. Biol., 97, 57–68.CrossRefGoogle Scholar
  33. Layzer, D.: 1975, The arrow of time’, Sci. Amer., 233, 56–69.CrossRefGoogle Scholar
  34. Lazcano, A.: 1986, ‘Prebiotic evolution and the origin of cells’, Treb. Soc. Cat. Biol., 39, 73–103.Google Scholar
  35. Levins, R.: 1975, ‘Evolution of communities near equilibrium’, in: Ecology and Evolution of Communities, Cody, M. L. and Diamond, J. M. (Eds.). Cambridge, Massachusetts: Belknap Press, pp. 16–50.Google Scholar
  36. Lima-de-Faria, A.: 1983, Molecular Order and Organization of the Chromosome. Amsterdam: Elsevier.Google Scholar
  37. Lindeman, R. L. : 1942, ‘The trophic-dynamic aspect of ecology’, Ecology, 23, 399–418.CrossRefGoogle Scholar
  38. Lotka, A. J.: 1913, ‘Evolution from the standpoint of physics, the principle of the nersistence of stable forms’, Sci. Amer. suppl. 75, 345–346, 354, 379.Google Scholar
  39. Lotka, A. J.: 1925, Elements of Physical Biology. Baltimore: Williams and Wilkins.Google Scholar
  40. Maurer, B. A.: 1987, ‘Scaling of biological community structure: A systems approach to community complexity’, J. Theor. Biol. 127, 97–110.CrossRefGoogle Scholar
  41. Maurer, B. A. and Brooks, D. R.: submitted, ‘Energy flow and entropy production in biological system’, J. Ideas. Google Scholar
  42. Nelson, G. and Platnick, N.: 1981, Systematics and Biogeography: Cladistics and Vicariance. New York: Columbia Univ. Press.Google Scholar
  43. Prigogine, I.: 1967, Thermodynamics of Irreversible Processes. New York: WileyIntersci. 3rd ed.Google Scholar
  44. Prigogine, I. : 1980, From Being to Becoming. San Francisco: W. H. Freeman and Co.Google Scholar
  45. Prigogine, I. and Wiame, J. W.: 1946, ‘Biologie et thermodynamique des phénomenes irréversibles’, Experientia, 2, 451–453.CrossRefGoogle Scholar
  46. Salthe, S. N.: 1985, Evolving Hierarchical Systems: Their Structure and Representation. New York: Columbia Univ. Press.Google Scholar
  47. Shannon, C. E. and Weaver, W.: 1949, The Mathematical Theory of Communicaton. Urbana: Univ. Illinois Press.Google Scholar
  48. Smith, J. D. H.: 1988, ‘A class of mathematical models for evolutuion and hierarchical information theory’, Inst. Math. Appl. Preprint Series 396, 1–13.CrossRefGoogle Scholar
  49. Stebbins, G. L. and Ayala, F. C.: 1981, ‘Is a new evolutionary synthesis necessary?, Science, 213, 967–971.CrossRefGoogle Scholar
  50. Ulanowicz, R. E.: 1980, ‘An hypothesis on the development of natural communities’, J. Theor. Biol., 85, 223–245.CrossRefGoogle Scholar
  51. Ulanowicz, R. E.: 1986, Growth and Development of Ecosystems and Communities. New York: Springer-Verlag.CrossRefGoogle Scholar
  52. Waddington, C. H.: 1966, ‘Fields and gradients’, in: Major Problems in Developmental Biology, Locke, M. (Ed.). London: Academic Press, pp. 105–124.Google Scholar
  53. Wake, D. B. and Larson, A.: 1987, ‘Multidimensional analysis of an evolving lineage’, Science, 238, 42–48.CrossRefGoogle Scholar
  54. Wanntorp, H-E., Stearns, S. C., Brooks, D. R., Nilsson, T., Nylin, S., Ronqvist, P. and Weddell, N.: ‘Phylogenetic approaches in ecology’, Oikos, 57, 119–132.Google Scholar
  55. Weber, B., Depew, D. J. and Smith J. D. (Eds.).: 1988, Entropy, Information and Evolution: New Perspectives on Physical and Biological Evolution. Cambridge: MIT Press.Google Scholar
  56. Wicken, J. S. 1987, Evolution, Thermodynamics and Information: Extending the Darwinian Paradigm. New York: Oxford Univ. Press.Google Scholar
  57. Wiley, E. O.: 1981, Phylogenetics: The Theory and Practice of Phylogenetic Systematics. New York: Wiley-Interscience.Google Scholar
  58. Wiley, E. O.: 1988a, ‘Vicariance biogeography’, Ann. Rev. Ecol. Syst., 19, 513–542.CrossRefGoogle Scholar
  59. Wiley, E. O.: 1988h, ‘Parsimony analysis and vicariance biogeography’, Syst. Zool., 37, 271–290.CrossRefGoogle Scholar
  60. Zotin, A. I. and Zotina, R. S.: 1978, ‘Experimental basis for qualitative phenomenological theory of development’, in: Thermodynamics of Biological Processes. Lamprecht, I. and Zotin, A. I. (Eds.). Berlin: deGruyter, pp. 61–84.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Daniel R. Brooks
    • 1
  1. 1.Department of ZoologyUniversity of TorontoCanada

Personalised recommendations