Skip to main content

Part of the book series: Topics in Inclusion Science ((TISC,volume 4))

Abstract

Molecular sieves are a class of porous open-framework solids, which includes aluminosilicates (zeolites), aluminophosphates and silicoaluminophosphates of diverse structures. Zeolites, the original molecular sieves, are built from corner-sharing SiO4 4 and AlO4 5- tetrahedra and contain regular systems of intracrystalline cavities and channels of molecular dimensions. The net negative charge of the framework, equal to the number of the constituent aluminium atoms, is balanced by exchangeable cations, Mn+, typically sodium, located in the channels which normally also contain water. The name “zeolite” (from the Greek ζεω = to boil and λιθoσ = stone) was coined by Cronstedt [1] in 1756 to describe the behaviour of the newly discovered mineral stilbite which, when heated, rapidly loses water and thus seems to boil. . . . .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fr. A. Cronstedt, Kongl. Svenska Vetenskaps Acad. Handlingar, 17, 120 (1756).

    Google Scholar 

  2. W. Loewenstein, Am. Mineral., 39, 92 (1954).

    CAS  Google Scholar 

  3. P. B. Weisz and V. J. Frilette, J. Phys. Chem., 64, 382 (1960).

    Article  CAS  Google Scholar 

  4. R. J. Argauer and G. R. Landolt, U.S. Patent, 3, 702, 886 (1972).

    Google Scholar 

  5. S. T. Wilson, B. M. Lok, C. A. Messina, T. A. Cannan and E. M. Flanigen, J. Am. Chem. Soc., 104, 1146 (1982).

    Article  CAS  Google Scholar 

  6. E. M. Flanigen, B. M. Lok, R. L. Patton and S. T. Wilson, Pure Appl. Chem., 58, 1351 (1986).

    Article  CAS  Google Scholar 

  7. W. M. Meier and D. H. Olson, Atlas of Zeolite Structure Types, Butterworths, Sevenoaks, Kent (1988).

    Google Scholar 

  8. D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use, Wiley, London (1974).

    Google Scholar 

  9. R. M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London (1978).

    Google Scholar 

  10. R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London (1982).

    Google Scholar 

  11. Zeolite Chemistry and Catalysis, ACS Monogr. 171 (1976).

    Google Scholar 

  12. Molecular Sieves II, J. R. Katzer (Ed), ACS Symposium Ser. 40 (1977).

    Google Scholar 

  13. C. Naccache and Y. Ben Taarit, Pure Appl. Chem., 52, 2175 (1980).

    Article  CAS  Google Scholar 

  14. P. A. Jacobs, Carboniogenic Activity of Zeolites, Elsevier, Amsterdam (1977).

    Google Scholar 

  15. Catalysis by Zeolites, B. Imelik, C. Naccache, Y. Ben Taarit, J. C. Védrine, G. Coudurier and H. Praliaud (Eds) Elsevier, Amsterdam (1980).

    Google Scholar 

  16. R.E. Wasylishen and C. A. Fyfe, in Annual Reports on NMR Spectroscopy, G. A. Webb (Ed) Vol. 12, pp. 1–80, Academic Press, London (1982).

    Google Scholar 

  17. J. Klinowski, Progr. NMR Spectrosc., 16, 237 (1984).

    Article  CAS  Google Scholar 

  18. J. Klinowski, Annu. Rev. Mater. Sci., 18, 189 (1988).

    Article  CAS  Google Scholar 

  19. G. Engelhardt and D. Michel, High-resolution Solid-State NMR of Silicates and Zeolites, Wiley, Chichester (1987).

    Google Scholar 

  20. S. L. Meisel, J. P. McCullogh, C. H. Lechthaler and P. B. Weisz, Chemtech, 6, 86 (1976).

    CAS  Google Scholar 

  21. W. W. Kaeding and S. Butter, U.S. Patent No. 3, 911, 041 (1975).

    Google Scholar 

  22. C. D. Chang, Catal. Rev. Sci. Eng., 25, 1 (1983).

    Article  CAS  Google Scholar 

  23. G. Winde, A. V. Volkov, A. V. Kiselev and V. I. Lygin, Russian J. Phys. Chem., 49, 1716 (1975).

    Google Scholar 

  24. Z. Luz and A. J. Vega, J. Phys. Chem., 91, 374 (1987).

    Article  CAS  Google Scholar 

  25. G. Mirth, J. A. Lercher, M. W. Anderson and J. Klinowski, J. Chem. Soc., Faraday Trans., 86, 3039 (1990).

    Article  CAS  Google Scholar 

  26. M. W. Anderson, P. J. Barrie and J. Klinowski, J. Phys. Chem., 95, 235 (1991).

    Article  CAS  Google Scholar 

  27. T. A. Carpenter, J. Klinowski, D. T. B. Tennakoon, C. J. Smith and D. C. Edwards, J. Magn. Reson., 68, 561 (1986).

    CAS  Google Scholar 

  28. M. W. Anderson and J. Klinowski, J. Chem. Soc., Chem. Commun., 918 (1990).

    Google Scholar 

  29. M. W. Anderson and J. Klinowski, Nature, 339, 200 (1989).

    Article  CAS  Google Scholar 

  30. M. W. Anderson and J. Klinowski, J. Am. Chem. Soc., 112, 10 (1990).

    Article  CAS  Google Scholar 

  31. B. R. Richardson, N. D. Lazo, P. D. Schettler, J. L. White and J. F. Haw, J. Am. Chem. Soc., 112, 2885 (1990).

    Article  Google Scholar 

  32. N. D. Lazo, J. L. White, E. J. Munson, M. Lambregts and J. F. Haw, J. Am. Chem. Soc., 112, 4050 (1990).

    Article  CAS  Google Scholar 

  33. J. L. White, N. D. Lazo, B. R. Richardson and J. F. Haw, J. Catal., 125, 260 (1990).

    Article  CAS  Google Scholar 

  34. E. J. Munson and J. F. Haw, Anal. Chem., 62, 2532 (1990).

    Article  CAS  Google Scholar 

  35. E. J. Munson, N. D. Lazo, M. E. Moellenhoff and J. F. Haw, J. Am. Chem. Soc., 113, 2783 (1991).

    Article  CAS  Google Scholar 

  36. M. W. Anderson, M. L. Occelli and J. Klinowski, J. Phys. Chem., 96, 388 (1992).

    Article  CAS  Google Scholar 

  37. J. F. Haw, B. R. Richardson, I. S. Oshiro, N. D. Lazo and J. A. Speed, J. Am.Chem. Soc., 111, 2052 (1989).

    Article  CAS  Google Scholar 

  38. S. M. Csicsery, in Zeolite Chemistry and Catalysis, J.A. Rabo (Ed), ACS Monograph, 171, 680 (1976).

    Google Scholar 

  39. N. Y. Chen, W. W. Kaeding and F. G. Dwyer, J. Am. Chem. Soc., 101, 6783 (1979).

    Article  CAS  Google Scholar 

  40. W. W. Kaeding, U.S. Patent No. 4, 029, 716 (1977).

    Google Scholar 

  41. W. O. Haag and D. H. Olson, U.S. Patent No. 4, 097, 543 (1978).

    Google Scholar 

  42. E. G. Derouane, J. B. Nagy, P. Dejaifve, J. H. C. van Hooff, B. P. Spekman, J. C. Védrine and C. Naccache, J. Catal., 53, 40 (1978).

    Article  CAS  Google Scholar 

  43. E. G. Derouane, P. Dejaifve, J. B. Nagy, J. H. C. van Hooff, B. P. Spekman, C. Naccache and J. C. Védrine, C. R. Acad. Sc. Paris Ser. C,284, 945 (1977).

    CAS  Google Scholar 

  44. J. B. Nagy, J. P. Gilson and E. G. Derouane J. Mol. Catal.,5, 393 (1979).

    Article  CAS  Google Scholar 

  45. E. G. Derouane, P. Dejaifve and J. B. Nagy, J. Mol. Catal., 3, 453 (1977).

    Google Scholar 

  46. E. G. Derouane and J. B. Nagy, ACS Symposium Ser., 248, 101 (1984).

    Article  CAS  Google Scholar 

  47. E. G. Derouane, J. P. Gilson and J. B. Nagy, Zeolites , 2, 42 (1982).

    Article  CAS  Google Scholar 

  48. C. E. Bronnimann and G. E. Maciel, J. Am. Chem. Soc., 108, 7154 (1986).

    Article  CAS  Google Scholar 

  49. J. B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press, New York (1972).

    Google Scholar 

  50. M. W. Anderson and J. Klinowski, Chem. Phys. Lett., 172, 275 (1990).

    Article  CAS  Google Scholar 

  51. W. Kolodziejski and J. Klinowski, Appl. Catal. A, 81, 133 (1992).

    Article  CAS  Google Scholar 

  52. M. T. Aronson, R. J. Gorte, W. E. Farneth and D. White, D. J. Am. Chem. Soc., 111, 840 (1989).

    Article  CAS  Google Scholar 

  53. M. W. Anderson, B. Sulikowski, P. J. Barrie and J. Klinowski, J. Phys. Chem., 94, 2730 (1990).

    Article  CAS  Google Scholar 

  54. B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan and E. M. Flanigen, J. Am. Chem. Soc., 106, 6092 (1984).

    Article  CAS  Google Scholar 

  55. M. Ito, Y. Shimoyama, Y. Saito, Y. Tsurita and M. Otake, Acta Crystallogr.C, 41, 1698 (1985).

    Article  Google Scholar 

  56. H. O. Kalinowski, S. Berger and S. Braun, 1 3 C-NMR-Spektroskopie, Georg Thieme, Stuttgart/New York (1984).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klinowski, J. (1992). Solid-State NMR Studies of Catalytic Reactions on Molecular Sieves. In: Davies, J.E.D. (eds) Spectroscopic and Computational Studies of Supramolecular Systems. Topics in Inclusion Science, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7989-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7989-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4203-3

  • Online ISBN: 978-94-015-7989-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics