Skip to main content

Cox-Type Regression Analysis for Large Numbers of Small Groups of Correlated Failure Time Observations

  • Chapter
Survival Analysis: State of the Art

Part of the book series: Nato Science ((NSSE,volume 211))

Abstract

The Cox regression model has been used extensively to analyze survival data. For data that consist of large numbers of small groups of correlated failure time observations, we show that the standard maximum partial likelihood estimate of the regression coefficient in the Cox model is still consistent and asymptotically normal. However, the corresponding standard variance-covariance estimate may no longer be valid due to the dependence among members in the groups. In this article, a correct variance-covariance estimate that takes account of the intra-group correlation is proposed. Power comparisons are performed to show the advantage of the new proposal. Examples are provided for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen, P. K., and Gill, R. D. (1982). Cox’s regression model for counting processes: A large sample study. The Annals of Statistics 10, 1100–1120.

    Article  MathSciNet  MATH  Google Scholar 

  • CMLIB (1983). Core Mathematics Library of the National Institute for Standards and Technology. Vols. 1-4.

    Google Scholar 

  • Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society Series B 34, 187–220.

    MATH  Google Scholar 

  • Cox, D. R., and Oakes, D. (1984). Analysis of Survival Data, Chapman and Hall Ltd., London.

    Google Scholar 

  • Diabetic Retinopathy Study Research Group (1981). Diabetic retinopathy study. Investigative Ophthalmology and Visual Science 21(part 2), 149–226.

    Google Scholar 

  • Holt, J. D., and Prentice, R. L. (1974). Survival analyses in twin studies and matched pair experiments. Biometrika 61, 17–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Hougaard, P. (1986). A class of multivariate failure time distributions. Biometrika 73, 671–678.

    MathSciNet  MATH  Google Scholar 

  • Kalbfleisch, J. D., and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. Wiley, New York.

    MATH  Google Scholar 

  • Lee, E. W., Wei, L. J., and Ying, Z. (1991). Linear regression analysis for highly stratified failure time data. Submitted.

    Google Scholar 

  • Liang, K. Y., and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, D. Y., and Wei, L. J. (1989). The robust inference for the Cox proportional hazards model. Journal of the American Statistical Association 84, 1074–1078.

    Article  MathSciNet  MATH  Google Scholar 

  • Mantel, N., Bohidar, N. R., and Ciminera, J. L. (1977). Mantel-Haenszel analysis of litter-matched time-to-response data, With modifications for recovery of interlitter information. Cancer Research 37, 3863–3868.

    Google Scholar 

  • Mantel, N., Ciminera, J. L. (1979). Use of log-rank scores in the analysis of litter-matched data on time to tumor appearance. Cancer Research 39, 4308–4315.

    Google Scholar 

  • O’Brien, P. C, and Fleming, T. R. (1987). A paired Prentice-Wilcoxon test for censored paired data. Biometrics 43, 169–180.

    Article  Google Scholar 

  • SAS Institute Inc. (1986). SUGI Supplemental Library User’s Guide, Version 5 Edition. SAS Institute Institute., Cary, NC.

    Google Scholar 

  • Schoenfeld, D. A., and Tsiatis, A. A. (1987). A modified log rank test for highly stratified data. Biometrika 74, 167–175.

    Article  MathSciNet  MATH  Google Scholar 

  • Sorbinil Retinopathy Trial Research Group (1990). A randomized trial of sorbinil, an aldose reductase inhibitor in diabetic retinopathy. Arch Ophthalmol 108, 1234–1244.

    Article  Google Scholar 

  • Wei, L. J. (1980). A generalized Gehan and Gilbert Test for paired observations that are subject to arbitrary right censorship. Journal of the American Statistical Association 75, 634–637.

    Article  MathSciNet  MATH  Google Scholar 

  • Wei, L. J., Lin, D. Y., and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of the American Statistical Association 84, 1065–1073.

    Article  MathSciNet  Google Scholar 

  • Wei, L. J., and Pee, D. (1985). Distribution-free methods of estimating location difference with censored paired data. Journal of the American Statistical Association 80, 405–410.

    Article  MathSciNet  MATH  Google Scholar 

  • Woolson, R. F., and Lachenbruch, P. A. (1980). Rank tests for censored matched pairs. Biometrika 67, 597–606.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lee, E.W., Wei, L.J., Amato, D.A., Leurgans, S. (1992). Cox-Type Regression Analysis for Large Numbers of Small Groups of Correlated Failure Time Observations. In: Klein, J.P., Goel, P.K. (eds) Survival Analysis: State of the Art. Nato Science, vol 211. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7983-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7983-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4133-3

  • Online ISBN: 978-94-015-7983-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics