Skip to main content

Semiparametric Estimation Of Parametric Hazard Rates

  • Chapter

Part of the Nato Science book series (NSSE,volume 211)

Abstract

The best known methods for estimating hazard rate functions in survival analysis models are either purely parametric or purely nonparametric. The parametric ones are sometimes too biased while the nonparametric ones are sometimes too variable. There should therefore be scope for methods that somehow try to combine parametric and nonparametric features. In the present paper three semiparametric approaches to hazard rate estimation are presented. The first idea uses a dynamic local likelihood approach to fit the locally most suitable member in a given parametric class of hazard rates. Thus the parametric hazard rate estimate at time s inserts a parameter estimate that also depends on s. The second idea is to write the true hazard as a product of an initial parametric estimate times a correction factor, and then estimate this factor nonparametrically using orthogonal expansions. Finally the third idea is Bayesian in flavour and builds a larger nonparametric hazard process prior around a given parametric hazard model. The hazard estimate in this case is the posterior expectation. Properties of the resulting estimators are discussed.

Keywords

  • Hazard Rate
  • Gibbs Sampling
  • Dirichlet Process
  • Cumulative Hazard
  • Orthogonal Expansion

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-015-7983-4_13
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-94-015-7983-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions. National Bureau of Standards, Washington.

    MATH  Google Scholar 

  • Andersen, P. K. and Borgan, Ø. (1985). Counting process models for life history data: A review (with discussion). Scandinavian Journal of Statistics 12, 97–158.

    MathSciNet  MATH  Google Scholar 

  • Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. L. (1991). Statistical Models Based on Counting Processes. Springer Verlag, to appear.

    Google Scholar 

  • Borgan, Ø. (1984). Maximum likelihood estimation in parametric counting process models, with applications to censored failure time data. Scandinavian Journal of Statistics 11, 1–16. Corrigendum, ibid. 275.

    MathSciNet  MATH  Google Scholar 

  • Gill, R. D. and Johansen, S. (1990). A survey of product-integration with a view toward application in survival analysis. Annals of Statistics 18, 1501–1555.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Hjort, N. L. (1985a). Contribution to the discussion of Andersen and Borgan’s “Counting process models for life history data: a review”. Scandinavian Journal of Statistics 12, 141–150.

    Google Scholar 

  • Hjort, N. L. (1985b). Bootstrapping Cox’s regression model. Technical Report NSF—241, Department of Statistics, Stanford University.

    Google Scholar 

  • Hjort, N. L. (1986a). Bayes estimators and asymptotic efficiency in parametric counting process models. Scandinavian Journal of Statistics 13, 63–85.

    MathSciNet  MATH  Google Scholar 

  • Hjort, N. L. (1986b). Statistical Symbol Recognition. Research Monograph, Norwegian Computing Centre, Oslo.

    Google Scholar 

  • Hjort, N. L. (1986c). Contribution to the discussion of Diaconis and Freedman’s “On the consistency of Bayes estimates”. Annals of Statistics 14, 49–55.

    CrossRef  Google Scholar 

  • Hjort, N. L. (1987). Semiparametric Bayes estimators. Proceedings of the First World Congress of the Bernoulli Society, VNU Science Press.

    Google Scholar 

  • Hjort, N. L. (1988). Contribution to the discussion of Hinkley’s lectures on bootstrapping techniques. Scandinavian Journal of Statistics, to appear.

    Google Scholar 

  • Hjort, N. L. (1990a). Goodness of fit tests in models for life history data based on cumulative hazard rates. Annals of Statistics 18, 1221–1258.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Hjort, N. L. (1990b). Nonparametric Bayes estimators based on Beta processes in models for life history data. Annals of Statistics 14, 1259–1294.

    MathSciNet  CrossRef  Google Scholar 

  • Hjort, N. L. (1991a). On inference in parametric survival data models. International Statistical Review. To appear.

    Google Scholar 

  • Hjort, N. L. (1991b). Bayesian and empirical Bayesian bootstrapping. Paper presented at the Fourth València meeting on Bayesian Statistics. Statistical Research Report, Department of Mathematics, University of Oslo.

    Google Scholar 

  • Hjort, N. L. (1991c). Estimation in moderately misspecified models. Statistical Research Report, Department of Mathematics, University of Oslo.

    Google Scholar 

  • Olkin, I. and Spiegelman, C. H. (1987). A semiparametric approach to density estimation. Journal of American Statistical Association 82, 858–865.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Ramlau-Hansen, H. (1983). Smoothing counting process intensities by means of kernel functions. Annals of Statistics 11, 453–466.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Tanner, M. A. and Wong, W. H. (1983). The estimation of the hazard function from randomly censored data. Annals of Statistics 11, 989–993.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Yandell, B. S. (1983). Nonparametric inference for rates and densities with censored serial data. Annals of Statistics 11, 1119–1135.

    MathSciNet  MATH  Google Scholar 

Additional References

  • Escobar, M. D. and West, M. (1991) Bayesian prediction and density estimation, ISDS Discussion Paper #90-A16, Duke University.

    Google Scholar 

  • West, M. (1992) Modelling with mixtures (with discussion). In Bayesian Statistics 4. (J. O. Berger, J. M. Bernardo, A. P. Dawid and A. F. M. Smith, Eds.), Oxford University Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hjort, N.L., West, M., Leurgans, S. (1992). Semiparametric Estimation Of Parametric Hazard Rates. In: Klein, J.P., Goel, P.K. (eds) Survival Analysis: State of the Art. Nato Science, vol 211. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7983-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7983-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4133-3

  • Online ISBN: 978-94-015-7983-4

  • eBook Packages: Springer Book Archive