Skip to main content

Statistical Analysis Of a Weibull Process With Left- Censored Data

  • Chapter

Part of the Nato Science book series (NSSE,volume 211)

Abstract

Maximum likelihood estimates, confidence limits and tests of hypotheses are derived for the parameters of a Weibull process when some of the early failure times are censored. In some cases the resulting tests are found to be uniformly most powerful unbiased tests.

Keywords

  • Poisson Process
  • Failure Time
  • Intensity Function
  • Repairable System
  • Conditional Test

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M. and Stegun, I. E. (1970). Handbook of Mathematical Functions. National Bureau of Standards, Washington, D. C.

    Google Scholar 

  • Ascher, H. and Feingold, H. (1984). Repairable Systems Reliability. Marcel Dekker, New York.

    MATH  Google Scholar 

  • Bain, L. J. and Engelhardt, M. (1980). Inferences on the parameters and current system reliability for a time truncated weibull process. Technometrics 22,421–426.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Bain, L. J. and Engelhardt, M. (1991). Statistical Analysis of Reliability and Life-Testing Models. Marcel Dekker, New York.

    MATH  Google Scholar 

  • Bain, L. J. and Weeks, D. L. (1964). A note on the truncated exponential distribution. Annals of Mathematical Statistics 35, 1366–1367.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Bartholomew, D. J. (1963). The sampling distribution of an estimate arising in life-testing. Technometrics 5, 361–374.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Çinlar, E. (1975). Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman and Hall, London.

    MATH  Google Scholar 

  • Crow, L. (1974). Reliability analysis of complex, repairable systems. In Reliability and Biometry (F. Proschan and R. J. Serfling, Eds.), Siam, New York, 379–410.

    Google Scholar 

  • Crow, L. (1982). Confidence interval procedures for the weibull process with applications to reliability growth. Technometrics 24, 67–72.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Engelhardt, M. (1988). Encyclopedia of Statistical Sciences. (N. L. Johnson and S. Kotz, Eds.), John Wiley and Sons, New York.

    Google Scholar 

  • Lehmann, E. L. (1959). Testing of Statistical Hypotheses. John Wiley and Sons, New York.

    Google Scholar 

  • Miller, S. K. (1976). The Rasch-Weibull Process. Scandinavian Journal of Statistics 3, 107–115.

    Google Scholar 

  • Ross, S. M. (1983). Stochastic Processes. John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Yeoman, A. (1987). Forecasting Building Maintenance Using the Weibull Process. M. S. Thesis, University of Missouri-Rolla.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Engelhardt, M., Bain, L.J., Blumenthal, S. (1992). Statistical Analysis Of a Weibull Process With Left- Censored Data. In: Klein, J.P., Goel, P.K. (eds) Survival Analysis: State of the Art. Nato Science, vol 211. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7983-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7983-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4133-3

  • Online ISBN: 978-94-015-7983-4

  • eBook Packages: Springer Book Archive