Skip to main content

Applications of dynamical systems theory to fractals — a study of cookie-cutter Cantor sets

  • Chapter
Fractal Geometry and Analysis

Part of the book series: NATO ASI Series ((ASIC,volume 346))

Abstract

Cookie-cutter Cantor sets in the line are studied as simple examples of fractals which are invariant sets of dynamical systems. The topics covered are: the characterization of a cookie-cutter via a dynamical system or an iterated function system (i.f.s.); introduction of measure theoretic and topological entropy and comparison with the concept of dimension; Bowen’s formula for Hausdorff dimension; a flow canonically associated with a cookie-cutter Cantor set; the order two density of Hausdorff measure (a characterization of lacunarity); the multifractal spectrum for cookie-cutters; and, Sullivan’s classification theorem for cookie-cutters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Barnsley (1988), Fractals Everywhere, Academic Press, Boston.

    MATH  Google Scholar 

  2. T. Bedford (1984), Ph.D Thesis, University of Warwick.

    Google Scholar 

  3. T. Bedford (1986), Dimension and dynamics of fractal recurrent sets, J. London Math. Soc. (2) 33, 89–100.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Bedford (1988), Hausdorff dimension and box dimension in self-similar sets, Proceedings of Topology and Measure V, Ernst-Moritz-Arndt Universität, Greifswald.

    Google Scholar 

  5. T. Bedford (1989), The box dimension of self-affine graphs and repellers, Nonlinearity 2, 53–71.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Bedford (1989), On Weierstrass-like functions and random recurrent sets, Math. Proc. Camb. Philos. Soc. 106, 325–342.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Bowen (1973), Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184, 125–136.

    Article  MathSciNet  Google Scholar 

  8. R. Bowen (1975), Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics 470, Springer, Berlin.

    Google Scholar 

  9. R. Bowen (1975), A horseshoe with positive measure, Invent. Math. 29, 203–204.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Bowen (1979), Hausdorff dimension of quasi-circles, Publications Mathématiques (I.H.E.S., Paris) 50, 11–25.

    MathSciNet  MATH  Google Scholar 

  11. M.F. Barnsley, S. Demko, J. Elton & J. Geronimo (1988), Invariant measures for Markov processes arising from function iteration with place dependent probabilities, Ann. Inst. H. Poincaré.

    Google Scholar 

  12. T. Bohr and D A Rand (1986), The entropy function for characteristic exponents, Physica 25D, 387–398.

    MathSciNet  Google Scholar 

  13. T. Bedford and M. Urbanski, The box and Hausdorff dimension of self-affine sets, Ergodic Theory Dynamical Systems,to appear.

    Google Scholar 

  14. F.M. Dekking (1982), Recurrent sets, Advances in Math. 44, 78–104.

    Article  MathSciNet  MATH  Google Scholar 

  15. F.M. Dekking (1982), Recurrent sets: a fractal formalism, Delft University of Technology Report of the Department of Mathematics 82–32.

    Google Scholar 

  16. K.J. Falconer (1985), The Geometry of Fractal Sets,Cambridge University Press,Cambridge.

    Book  MATH  Google Scholar 

  17. K.J. Falconer (1988), A subadditive thermodynamic formalism for mixing repellers, J. Phys. 21A, 737–742.

    MathSciNet  Google Scholar 

  18. J.E. Hutchinson (1981), Fractals and self-similarity, Indiana Univ. Math. J. 30, 713–747.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Keane (1972), Strongly mixing g-measures, Invent.Math. 16, 309–324.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Mandelbrot (1983), The Fractal Geometry of Nature, W.H. Freeman

    Google Scholar 

  21. C. McMullen (1984), The Hausdorff dimension of general Sierpnski carpets, Nagoya Math J. 96, 1–9.

    MathSciNet  MATH  Google Scholar 

  22. F. Przytycki and M. Urbariski, On Hausdorff dimension of some fractal sets, Studia Math.,to appear.

    Google Scholar 

  23. D.A. Rand (1989), The singularity spectrum (a) for cookie cutters, Ergodic Theory Dynamical Systems 9, 527–541.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Rand and T. Bohr (1986), The entropy function for characteristic exponents, Physica 25D, 387–398

    MathSciNet  Google Scholar 

  25. D. Ruelle (1978), Thermodynamic formalism: the mathematical structures of classical equilibrium statistical mechanics. Encyclopedia of Mathematics and its Applica-tions 5, Addison-Wesley 1978.

    Google Scholar 

  26. D. Ruelle (1982), Repellers for real analytic maps, Ergodic Theory Dynamical Systems 2, 99–107.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Stirling, Methodus differentialis: sive tractus de summatione et interpolatione serierum infinitarum, London, 1730.

    Google Scholar 

  28. D. Sullivan, Differentiable structures on fractal-like sets, determined by intrinsic scaling functions on dual Cantor sets, in Proceedings of the Herman Weyl Symposium, Duke University, Proceedings of Symposia in Pure Mathematics 48.

    Google Scholar 

  29. D. Sullivan (1986), Quasiconformal homeomorphisms in dynamics, topology, and geometry., Proc. Int. Cong. Berkeley 2, 1216–1228.

    Google Scholar 

  30. M. Shub and D. Sullivan (1985), Expanding endomorphisms of the circle revisited, Ergodic Theory Dynamical Systems 5, 285–289.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Tricot (1982), Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91, 57–74.

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Walters (1973), Some results on the classification of measure preserving transformations, Recent Advances in Topological Dynamics, Lecture Notes in Mathematics 319, Springer, Berlin, 255–276.

    Google Scholar 

  33. P. Walters (1975), Ruelle’s operator theorem and g-measures, Trans. Amer. Math. Soc. 214, 375–387.

    MathSciNet  MATH  Google Scholar 

  34. P. Walters (1982), An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79, Springer, New York.

    Google Scholar 

  35. L.S. Young (1982), Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynamical Systems 2, 109–124.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bedford, T. (1991). Applications of dynamical systems theory to fractals — a study of cookie-cutter Cantor sets. In: Bélair, J., Dubuc, S. (eds) Fractal Geometry and Analysis. NATO ASI Series, vol 346. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7931-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7931-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7933-9

  • Online ISBN: 978-94-015-7931-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics