Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 184))

Abstract

Force microscopy is a new technique which allows the investigation of minute interactions on a micrometer down to an atomic scale. We will give a short overview of the most important experimental aspects and describe recent trends in instrumentation and force probe design. Different forces which have been studied by force microscopy are summarized. The emphasis is put on the imaging mode of force microscopy in the regime of repulsive contact forces, commonly called atomic force microscopy (AFM). Numerous examples from our group as well as from other laboratories illustrate the high resolution capability of AFM, and the wide variety of samples studied so far show the applicability of AFM to different fields of actual interest, such as surface science, biology and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Tabor and F. R. S. Winterton. The Direct Measurement of Normal and Retarded Van der Waals Forces. Proc. R. Soc. A 312, 435 (1969).

    Article  CAS  Google Scholar 

  2. J. N. Israelachvili and D. Tabor. The Measurement of Van der Waals Dispersion Forces in the Range of 1.5 to 130 nm. Proc. R. Soc. Lond. A 331, 19 (1972).

    Article  CAS  Google Scholar 

  3. J. N. Israelachvili. Intermolecular and Surface Forces. Academic Press, (1985).

    Google Scholar 

  4. G. Binnig and H. Rohrer. Scanning Tunneling Microscopy. Helv. Phys. Acta 55, 726 (1982).

    CAS  Google Scholar 

  5. G. Binnig and H. Rohrer. Scanning Tunneling Microscopy. IBM J. Res. Dev. 30, 355 (1986).

    CAS  Google Scholar 

  6. H. K. Wickramasinghe. Scanned-Probe Microscopes. Scientific American, October 1989.

    Google Scholar 

  7. G. Binnig, C. F. Quate, and Ch. Gerber. Atomic Force Microscope. Phys. Rev. Lett. 56, 930 (1986).

    Article  Google Scholar 

  8. E. C. Teague, F. E. Scire, S. M. Baker, and S. W. Jensen. Three-dimensional Stylus Profilometry. Wear 83, 1 (1982).

    Article  Google Scholar 

  9. C. M. Mate, R. Erlandsson, G. M. McClelland, and S. Chiang. Direct Measurement of Forces during Scanning Tunneling Microscope Imaging of Graphite. Surf. Sci. 208, 473 (1989).

    Article  CAS  Google Scholar 

  10. J. B. Pethica and W. C. Oliver. Tip Surface Interactions in STM and AFM. Physica Scripta T19, 61 (1987).

    Article  Google Scholar 

  11. T. R. Albrecht and C. F. Quate. Atomic Resolution Imaging of a Nonconductor by Atomic Force Microscopy. J. Appl. Phys. 62, 2599 (1987).

    Article  CAS  Google Scholar 

  12. H. Heinzelmann, P. Grütter, E. Meyer, H.-R. Hidber, L. Rosenthaler, M. Ringger, and H.-J. Güntherodt. Design of an Atomic Force Microscope and First Results. Surf. Sci. 189/190, 29 (1987).

    Article  Google Scholar 

  13. O. Marti, B. Drake, and P. K. Hansma. Atomic Force Microscopy of Liquid-Covered Surfaces: Atomic Resolution Images. Appl. Phys. Lett. 51, 484 (1987).

    Article  CAS  Google Scholar 

  14. R. Yang, R. Miller, and P. J. Bryant. Atomic Force Profiling by Utilizing Contact Forces. J. Appl. Phys. 63, 570 (1988).

    Article  Google Scholar 

  15. H. Yamada, T. Fujii, and K. Nakayama. Experimental Study of Forces between a Tunnel Tip and the Graphite Surface. J. Vac. Sci. Technol. A 6, 293 (1988).

    Article  CAS  Google Scholar 

  16. C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang. Atomic-Scale Friction of a Tungsten Tip on a Graphite Surface. Phys. Rev. Lett. 59, 1942 (1987).

    Article  CAS  Google Scholar 

  17. G. M. McClelland, R. Erlandsson, and S. Chiang. Atomic Force Microscopy: General Principles and a New Implementation. Rev. Progr. Qual. Non-Destr. Eval. 6 (1987). Plenum, New York.

    Google Scholar 

  18. D. Rugar, H. J. Mamin, R. Erlandsson, J. E. Stern, and B. D. Terris. Force Microscope Using a Fiber-Optic Displacement Sensor. Rev. Sci. Instr. 59, 2337 (1988).

    Article  CAS  Google Scholar 

  19. A.J. den Boef. Scanning Force Microscope Using a Simple Low-Noise Interferometer. Appl. Phys. Lett. 55, 439 (1989).

    Article  Google Scholar 

  20. C. Schönenberger and S. F. Alvarado. A Differential Interferometer for Force Microscopy. Submitted to Rev. Sci. Instr.

    Google Scholar 

  21. Y. Martin, C. C. Williams, and H. K. Wickramasinghe. Atomic Force Microscope — Force Mapping and Profiling on a Sub 100 Å Scale. J. Appl. Phys. 61, 4723 (1987).

    Article  CAS  Google Scholar 

  22. D. Rugar, H. J. Mamin, and P. Guethner. Improved Fiber Optic Interferometer for Atomic Force Microscopy. To be published in Appl. Phys. Lett.

    Google Scholar 

  23. D. Royer, E. Dieulesaint, and Y. Martin. Improved Version of a Polarized Beam Heterodyne Interferometer. Ultrasonics Symposium page 432 (1985).

    Google Scholar 

  24. D. Sarid, D. A. Iams, V. Weissenberger, and L. S. Bell. Compact Scanning-Force Microscope Using a Laser Diode. Opt. Lett. 13, 1057 (1988).

    Article  CAS  Google Scholar 

  25. D. Sarid, D. A. Iams, and J. T. Ingle. Performance of a Scanning Force Microscope. To be published in J. Vac.Sci. Technol. A.

    Google Scholar 

  26. R. Kaneko, K. Nonaka, and K. Yasuda. Summary Abstract: Scanning Tunneling Microscopy and Atomic Force Microscopy for Microtribology. J. Vac. Sci. Technol. A 6, 291 (1988).

    Article  Google Scholar 

  27. G. Meyer and N. M. Amer. Novel Optical Approach to Atomic Force Microscopy. Appl. Phys. Lett. 53, 1044 (1988).

    Google Scholar 

  28. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley. An Atomic-Resolution AFM implemented using an Optical Lever. J. Appl. Phys. 65, 164 (1989).

    Article  CAS  Google Scholar 

  29. T. Göddenhenrich, H. Lemke, U. Hartmann, and C. Heiden. Force Microscope with Capacitive Displacement Sensor. To be published in J. Vac. Sci. Technol. A.

    Google Scholar 

  30. U. Dürig, J. K. Gimzewski, and D. W. Pohl. Experimental Observation of Forces Acting during STM. Phys. Rev. Lett. 57, 2403 (1986).

    Article  Google Scholar 

  31. S. L. Tang, J. Bokor, and R. H. Storz. Direct Force Measurement in Scanning Tunneling Microscopy. Appl. Phys. Lett. 52, 188 (1988).

    Article  Google Scholar 

  32. T. Göddenhenrich, U. Hartmann, M. Anders, and C. Heiden. Investigations of Bloch Wall Fine Structures by Magnetic Force Microscopy. J. Microsc. 152, 527 (1988).

    Article  Google Scholar 

  33. M. Anders and C. Heiden. Imaging of Tip-Sample Compliance in STM. J. Microsc. 152, 643 (1988).

    Article  CAS  Google Scholar 

  34. M. D. Kirk, T. R. Albrecht, and C. F. Quate. Low Temperature Atomic Force Microscopy. Rev. Sci. Instr. 59, 833 (1988).

    Article  Google Scholar 

  35. P. J. Bryant, R. G. Miller, and R. Yang. Scanning Tunneling Microscopy and Atomic Force Microscopy Combined. Appl. Phys. Lett. 52, 2233 (1988).

    Article  CAS  Google Scholar 

  36. K. E. Petersen. Silicon as a Mechanical Material. Proc. IEEE 70, 420 (1982).

    Article  CAS  Google Scholar 

  37. G. Binnig, Ch. Gerber, E. Stoll, T. R. Albrecht, and C. F. Quate. Atomic Resolution with Atomic Force Microscope. Europhys. Lett. 3, 1281 (1987).

    Article  CAS  Google Scholar 

  38. T. R. Albrecht and C. F. Quate. Atomic Resolution with the Atomic Force Microscope on Conductors and Nonconductors. J. Vac. Sci. Technol. A 6, 271 (1988).

    Article  CAS  Google Scholar 

  39. E. Meyer, H. Heinzelmann, P. Grütter, Th. Jung, Th. Weisskopf, H.-R. Hidber, R. Lapka, H. Rudin, and H.-J. Güntherodt. Comparative Study of Lithium Fluoride and Graphite by Atomic Force Microscopy (AFM). J. Microsc. 151, 269 (1988).

    Article  Google Scholar 

  40. T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate. Microfabricated Cantilever Stylus for Atomic Force Microscopy. Manuscript in preparation.

    Google Scholar 

  41. O. Wolter. Micromechanics: Overview and Applications to SXM. Presented at the Seminar “SXM”: Ultramicroscopy, Physics and Chemistry on the Nanometer Scale. IBM Europe Institute, Garmisch-Partenkirchen, August 14–18, 1989.

    Google Scholar 

  42. R. Erlandsson, G. M. McClelland, C. M. Mate, and S. Chiang. Atomic Force Microscopy using Optical Interferometry. J. Vac. Sci. Technol. A 6, 266 (1988).

    Article  CAS  Google Scholar 

  43. Yu. N. Moiseev, V. M. Mostepanenko, V. I. Panov, and I. Yu. Sokolov. Force Dependences for the Definition of the Atomic Force Microscopy Spatial Resolution. Phys. Lett. A 132, 354 (1988).

    Article  CAS  Google Scholar 

  44. J. E. Lennard-Jones. Processes of Adsorption and Diffusion on Solid Particles. Trans. Faraday Soc. 28, 334 (1932).

    Article  Google Scholar 

  45. I. P. Batra and S. Ciraci. Theoretical STM and AFM Study of Graphite Including Tip-Surface Interaction. J. Vac. Sci. Technol A 6, 313 (1988).

    Article  CAS  Google Scholar 

  46. F. F. Abraham and I. P. Batra. Theoretical Interpretation of Atomic-Force-Microscope Images of Graphite. Surf. Sci. 209, L125 (1989).

    Article  CAS  Google Scholar 

  47. F. F. Abraham, I. P. Batra, and S. Ciraci. Effect of Tip Profile on Atomic-Force Microscope Images: A Model Study. Phys. Rev. Lett. 60, 1314 (1988).

    Article  CAS  Google Scholar 

  48. D. Tománek, G. Overney, H. Miyazaki, and S.D. Mahanti. (in preparation).

    Google Scholar 

  49. U. Landman, W. D. Luedtke, and A. Nitzan. Dynamics of Tip-Substrate Interactions in AFM. Surf. Sci. 210, L177 (1989).

    Article  CAS  Google Scholar 

  50. R. J. Celotta and D. T. Pierce. Polarized Electron Probes of Magnetic Surfaces. Science 234, 333 (1986).

    Article  CAS  Google Scholar 

  51. Y. Martin and H. K. Wickramasinghe. Magnetic Imaging by “Force Microscopy” with 1000 ÅResolution. Appl. Phys. Lett. 50, 1455 (1987).

    Article  Google Scholar 

  52. J. J. Saenz, N. Garcia, P. Grütter, E. Meyer, H. Heinzelmann, R. Wiesendanger, L. Rosenthaler, H.-R. Hidber, and H.-J. Güntherodt. Observation of Magnetic Forces by the Atomic Force Microscope. J. Appl. Phys. 62, 4293 (1987).

    Article  Google Scholar 

  53. Y. Martin, D. Rugar, and H. K. Wickramasinghe. High Resolution Magnetic Imaging of Domains in TbFe by Force Microscopy. Appl. Phys. Lett. 52, 244 (1988).

    Article  CAS  Google Scholar 

  54. D. W. Abraham, C. C. Williams, and H. Wickramasinghe. Measurement of in-plane Magnetization by Force Microscopy. Appl. Phys. Lett. 53, 1446 (1988).

    Article  CAS  Google Scholar 

  55. H. J. Mamin, D. Rugar, J. E. Stern, B. D. Terris, and S. E. Lambert. Force Microscopy of Magnetization Patterns in Longitudinal Recording Media. Appl. Phys. Lett. 53, 1563 (1988).

    Article  Google Scholar 

  56. P. Grütter, E. Meyer, H. Heinzelmann, L. Rosenthaler, H.-R. Hidber, and H.-J. Güntherodt. Application of Atomic Force Microscopy to Magnetic Materials. J. Vac. Sci. Technol. A 6, 279 (1988).

    Article  Google Scholar 

  57. H. J. Mamin, D. Rugar, J. E. Stern, R. E. Fontana, and P. Kasiraj. Magnetic Force Microscopy of Thin Permalloy Films. Appl. Phys. Lett. 55, 318 (1989).

    Article  CAS  Google Scholar 

  58. C. Schönenberger, S. F. Alvarado, S. E. Lambert, and I. L. Sanders. Separation of Magnetic and Topographic Effects in Force Microscopy. Submitted to J. Appl. Phys.

    Google Scholar 

  59. U. Hartmann and C. Heiden. Calculation of the Bloch Wall Contrast in Magnetic Force Microsocpy. J. Microsc. 152, 281 (1988).

    Article  Google Scholar 

  60. A. Wadas and P. Grütter. Theoretical Approach to Magnetic Force Microscopy. Phys. Rev. B 39, 12013 (1989).

    Article  Google Scholar 

  61. Y. Martin, D. W. Abraham, and H. K. Wickramasinghe. High-Resolution Capacitance Measurement and Potentiometry by Force Microscopy. Appl. Phys. Lett. 52, 1103 (1988).

    Article  Google Scholar 

  62. J. E. Stern, B. D. Terris, H. J. Mamin, and D. Rugar. Deposition and Imaging of Localized Charge on Insulator Surfaces using AFM. Appl. Phys. Lett. 53, 2717 (1988).

    Article  Google Scholar 

  63. B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin. Localized Charge Force Microscopy. To be published in J. Vac. Sci. Technol. A.

    Google Scholar 

  64. B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin. Novel Study of Contact Electrification Using Force Microscopy. Submitted to Phys. Rev. Lett.

    Google Scholar 

  65. R. Erlandsson, G. Hadzioannou, C. M. Mate, G. M. McClelland, and S. Chiang. Atomic Scale Friction Between the Muscovite Mica Cleavage Plane an a Tungsten Tip. J. Chem. Phys. 89, 5190 (1988).

    Article  CAS  Google Scholar 

  66. G. M. McClelland. Friction between Weakly Interacting Surfaces. In Adhesion and Friction, eds. H. J. Kreuzer and M. Grunze, Springer Series in Surface Science, Springer Verlag, Berlin, (1989).

    Google Scholar 

  67. D.H. Buckley. Surface Effects in Adhesion, Friction, Wear and Lubrication. Elsevier, Amsterdam, (1982).

    Google Scholar 

  68. J. Ferrante and J. R. Smith. Theory of the Bimetallic Interface. Phys. Rev. B 31, 3427 (1985).

    Article  CAS  Google Scholar 

  69. U. Dürig, O. Züger, and D. W. Pohl. Force Sensing in Scanning Tunneling Microscopy: Observation of Adhesion Forces on Clean Metal Surfaces. J. Microsc. 152, 259 (1988).

    Article  Google Scholar 

  70. H. Heinzelmann, E. Meyer, P. Grütter, H.-R. Hidber, L. Rosenthaler, and H.-J. Güntherodt. Atomic Force Microscopy: General Aspects and Application to Insulators. J. Vac. Sci. Technol. A 6, 275 (1988).

    Article  CAS  Google Scholar 

  71. L. A. Girifalco and R. A. Lad. Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System. J. Chem. Phys. 25, 693 (1956).

    Article  CAS  Google Scholar 

  72. N. A. Burnham and R. J. Colton. Measuring the Nanomechanical Properties and Surface Forces of Materials using an Atomic Force Microscope. J. Vac. Sci. Technol. A 7, 2906 (1989).

    Article  CAS  Google Scholar 

  73. C. M. Mate, M. R. Lorenz, and V. J. Novotny. Atomic Force Microscopy of Polymeric Liquid Films. J. Chem. Phys. 90, 7550 (1989).

    Article  CAS  Google Scholar 

  74. A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, and C. F. Quate. Forces in Atomic Force Microscopy in Air and Water. Appl. Phys. Lett. 54, 2651 (1989).

    Article  Google Scholar 

  75. J. B. Pethica, R. Hutchings, and W. C. Oliver. Hardness Measurement at Penetration Depths as small as 20 nm. Phil. Mag. 48, 593 (1983).

    Article  CAS  Google Scholar 

  76. M. Yanagisawa and Y. Motomura. An Ultramicro Indentation Hardness Tester and Its Application to Thin Films. Lubrication Engineering, page 52, October 1989.

    Google Scholar 

  77. R. V. Coleman, B. Drake, P. K. Hansma, and G. Slough. Charge-Density Waves Observed with a Tunneling Microscope. Phys. Rev. Lett. 55, 394 (1985).

    Article  CAS  Google Scholar 

  78. R. E. Thomson, U. Walter, E. Ganz, J. Clarke, and A. Zettl. Local Charge-Density-Wave Structure in 1T-TaS2 Determined by Scanning Tunneling Microscopy. Phys. Rev. B 38, 10734 (1988).

    Article  CAS  Google Scholar 

  79. N. V. Smith, S. D. Kevan, and F. J. DiSalvo. Band Structures of the Layer Compounds 1T-TaS2 and 2H-TaSe2 in the Presence of Commensurate Charge-Density Waves. J. Phys. C: Solid State Phys. 18, 3175 (1985).

    Article  CAS  Google Scholar 

  80. E. Meyer, D. Anselmetti, R. Wiesendanger, H.-J. Güntherodt, F. Lévy, and H. Berger. Different Response of Atomic Force Microscopy and Scanning Tunneling Microscopy to Charge Density Waves. Europhys. Lett. 9, 695 (1989).

    Article  CAS  Google Scholar 

  81. P. Cantini, G. Boato, and R. Colella. Surface Charge Density Waves Observed by Atomic Beam Diffraction. Physica B 99, 59 (1980).

    Article  CAS  Google Scholar 

  82. O. Marti, B. Drake, S. Gould, and P. K. Hansma. Atomic Resolution Atomic Force Microscopy of Graphite and the “native Oxide” on Silicon. J. Vac. Sci. Technol. A 6, 287 (1988).

    Article  CAS  Google Scholar 

  83. R. C. Barrett and C. F. Quate. Imaging Polished Sapphire with Atomic Force Microscopy. To be published in J. Vac. Sci. Technol. A.

    Google Scholar 

  84. B. N. J. Persson. The Atomic Force Microscope: Can it be Used to Study Biological Molecules. Chem. Phys. Lett. 41, 366 (1987).

    Article  Google Scholar 

  85. O. Marti, H. O. Ribi, B. Drake, T. R. Albrecht, C. F. Quate, and P. K. Hansma. Atomic Force Microscopy of an Organic Monolayer. Science 239, 50 (1988).

    Article  CAS  Google Scholar 

  86. T. R. Albrecht, M. M. Dovek, C. A. Lang, P. Grütter, C. F. Quate, S. W. J. Kuan, C. W. Frank, and R. F. W. Pease. Imaging and Modification of Polymers by Scanning Tunneling Microscopy and Atomic Force Microscopy. J. Appl. Phys. 64, 1178 (1988).

    Article  CAS  Google Scholar 

  87. B. Drake, C. B. Prater, A. L. Weisenhorn, S. A. C. Gould, T. R. Albrecht, C. F. Quate, H. G. Hansma D. S. Cannell, and P. K. Hansma. Imaging Crystals, Polymers, and Processes in Water with the Atomic Force Microscope. Science 243, 1586 (1989).

    Google Scholar 

  88. S. A. Chalmers, A. C. Gossard, A. L. Weisenhorn, S. A. C. Gould, B. Drake, and P. K. Hansma. The Determination of Tilted Superlattice Structure by Atomic Force Microscopy. To be published in Appl. Phys. Lett.

    Google Scholar 

  89. K.-H. Robrock, K. N. Tu, D. W. Abraham, and J. B. Clabes. Study of Planarization of Cobalt Silicide Lines and Silicon by Scanning Force Microscopy and Scanning Electron Microscopy. Appl. Phys. Lett. 54, 1543 (1989).

    Article  CAS  Google Scholar 

  90. H. Heinzelmann, E. Meyer, L. Scandella, P. Grütter, Th. Jung, H. Hug, H.-R. Hidber, and H.-J. Güntherodt. Topography and Correlation to Wear of Hydrogenated Amorphous Carbon Coatings: An Atomic Force Microscope Study. Wear 135, 107 (1989).

    Article  Google Scholar 

  91. E. Meyer, H. Heinzelmann, P. Grütter, Th. Jung, H.-R. Hidber, H. Rudin, and H.-J. Güntherodt. Investigations of Hydrogenated Amorphous Carbon Coatings for Magnetic Data Storage Media by Atomic Force Microscopy (AFM). To be published in Appl. Phys. Lett.

    Google Scholar 

  92. H. Tsai and D. B. Bogy. Critical Review: Characterization of Diamond-Like Carbon Films and their Application as Overcoats on Thin Film Media for Magnetic Recording. J. Vac. Sci. Technol. A 5, 3287 (1987).

    Article  CAS  Google Scholar 

  93. H. Heinzelmann, D. Anselmetti, R. Wiesendanger, H.-R. Hidber, H.-J. Güntherodt, M. Düggelin, R. Guggenheim, H. Schmidt, and G. Güntherodt. STM and AFM Investigations of High-T c Superconductors. J. Microsc. 152, 399 (1988).

    Article  CAS  Google Scholar 

  94. H. Heinzelmann, D. Anselmetti, R. Wiesendanger, H.-J. Güntherodt, E. Kaldis, and A. Wisard. Topography and Local Modification of the HoBa2Cu3O7-x (001) Surface using Scanning Tunneling Microscopy. Appl. Phys. Lett. 53, 2447 (1988).

    Article  CAS  Google Scholar 

  95. E. Meyer, H. Heinzelmann, P. Grütter, and H.-J. Güntherodt. A Study of the AgBr(111) and AgBr(111) Surfaces by Means of Atomic Force Microscopy. To be published in J. Appl. Phys.

    Google Scholar 

  96. H. Heinzelmann, E. Meyer, H.-J. Güntherodt, and R. Steiger. Local Step Structure of the AgBr(100) and (111) Surfaces using Atomic Force Microscopy. Surf. Sci. 221, 1 (1989).

    Article  CAS  Google Scholar 

  97. J. F. Hamilton. The Silver Halide Photographic Process. Advan. Phys. 37, 359 (1988).

    Article  CAS  Google Scholar 

  98. C. Duschl, W. Frey, and W. Knoll. The Crystalline Structure of Two-Dimensional Cyanine Dye Single Crystals as Revealed by Electron Diffraction. Thin Solid Films 160, 251 (1988).

    Article  CAS  Google Scholar 

  99. J. E. Maskasky. Epitaxial Selective Site Sensitization of Tabular Grain Emulsions. J. Imaging Sci. 32, 160 (1988).

    CAS  Google Scholar 

  100. J. F. Hamilton and L. E. Brady. A Model for the AgBr(lll) Surface, based on the Symmetry of Nucleation Sites for Evaporated Metal. Surf. Sci. 23, 389 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heinzelmann, H., Meyer, E., Rudin, H., Güntherodt, HJ. (1990). Force Microscopy. In: Behm, R.J., Garcia, N., Rohrer, H. (eds) Scanning Tunneling Microscopy and Related Methods. NATO ASI Series, vol 184. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7871-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7871-4_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4075-6

  • Online ISBN: 978-94-015-7871-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics