Skip to main content

Part of the book series: Mathematics and Its Applications ((MAEE,volume 28))

  • 400 Accesses

Abstract

In the book [1] one finds that almost all triangles inequalities are symmetric in form when expressed in terms of the sides a, b, c or the angles A, B, C of a given triangle. No doubt that also assymmetric triangle inequalities play a very important role in geometric inequalities. It should be noted that many of these inequalities are still valid for real numbers A, B, C which satisfy the condition

$$ A + B + C = p\pi , $$

where p is a natural number (which has to be odd in some cases). This also applies to the inequality of M. S. Klamkin [2] which can be specialized in many ways to obtain numerous well known inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GI: O. Bottema, R. Z. Djordjevid, R. R. Janid, D. S. Mitrinovid, and P.M. Vasie, Geometric Inequalities, Groningen, 1969.

    Google Scholar 

  2. M. S. Klamkin, ‘Asymmetric Triangle Inequalities’, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 357–380 (1971), 33–44.

    Google Scholar 

  3. J. Wolstenholme, A Book of Mathematical Problems, London-Cambridge, 1867.

    Google Scholar 

  4. V. N. Murty, K. Satyanarayana, and M. S. Klamkin, ‘Problem 715’, Crux Math. 8 (1982), 48

    Google Scholar 

  5. V. N. Murty, K. Satyanarayana, and M. S. Klamkin, ‘Problem 715’, Crux Math. 9 (1983), 58–62.

    Google Scholar 

  6. O. Bottema and M. S. Klamkin, ‘Joint Triangle Inequalities’, Simon Stevin 48 (1974/75), 3–8.

    Google Scholar 

  7. M. S. Klâmkin, ‘Notes on Inequalities Involving Triangles or Tetrahedrons’, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 330–337 (1970), 1–15.

    Google Scholar 

  8. B. Milisavljevid, ‘Problem 457’, Mat. Vesnik 2 (1978), 423.

    Google Scholar 

  9. J. Szikszai, ‘Problem F.2302’, Köz. Mat. Lap. 62 (1981), 126

    Google Scholar 

  10. J. Szikszai, ‘Problem F.2302’, Köz. Mat. Lap. 63 (1981), 128–130.

    Google Scholar 

  11. P. M. Vasid, ‘Some Inequalities for the Triangle’, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 274–301 (1969), 121–126.

    Google Scholar 

  12. M. S. Klamkin, ‘On a Triangle Inequality’, Crux Math. 10 (1984), 139–140.

    Google Scholar 

  13. M. S. Klamkin, ‘An Identity for Simplexes and Related Inequalities’, Simon Stevin 48 (1975), 57–64.

    MathSciNet  Google Scholar 

  14. T. Chaundy, TE-J Differential Calculus, Oxford, 1935, p. 292.

    Google Scholar 

  15. M. S. Klamkin and W. Janous, ‘Problem 908’, Crux Math. 10 (1984), 19

    Google Scholar 

  16. M. S. Klamkin and W. Janous, ‘Problem 908’, Crux Math. 11 (1985), 93–94.

    Google Scholar 

  17. G. H. Hardy, A Course of Pure Mathematics, Cambridge, 1958, p. 311.

    Google Scholar 

  18. A. Oppenheim, ‘Problem E 1724’, Amer. Math. Monthly 72 (1965), 792.

    Article  MathSciNet  Google Scholar 

  19. I. Tomescu and A. W. Walker, ‘Problem E 2221’, Ibid. 78 (1971), 82–83.

    MathSciNet  Google Scholar 

  20. V. Nicula, ‘On an Inequality’ (Romanian), Gaz. Mat. (Bucharest) 89 (1984), 273–276.

    Google Scholar 

  21. R. O. Djordjevid, ‘Some Inequalities for the Elements of a Triangle’, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 274–301 (1969), 124–126.

    Google Scholar 

  22. M. S. Klamkin and C. S. Karuppan Chetty, ‘Problem E 2958’, Amer. Math. Monthly 91 (1985), 289.

    MathSciNet  Google Scholar 

  23. T. Lalesco, La Géométrie du Triangle, Paris, 1952, pp. 101–104.

    Google Scholar 

  24. R. R. Janié and Z. M. Stojakovid, ‘Problem 173’, Mat. Vesnik 6 (1969), 351

    Google Scholar 

  25. R. R. Janié and Z. M. Stojakovid, ‘Problem 173’, Mat. Vesnik 7 (1970), 276.

    Google Scholar 

  26. S. Tache, Gaz. Mat. (Bucharest) 2 (86) (1981), 57–60.

    Google Scholar 

  27. V. O. Gordon, ‘Problem 466’, Matat v skole 2 (1968), 89

    Google Scholar 

  28. V. O. Gordon, ‘Problem 466’, Matat v skole 6 (1968), 77.

    Google Scholar 

  29. J. Garfunkel and J. Gillis, ‘Problem E 2119’, Amer. Math. Monthly 75 (1968) and 76 (1969), 831.

    Article  MathSciNet  Google Scholar 

  30. M. S. Klamkin, ‘Problem 313’, Pi Mu Epsilon J. 6 (1974), 46

    Google Scholar 

  31. M. S. Klamkin, ‘Problem 313’, Pi Mu Epsilon J. 6 (1975), 109.

    Google Scholar 

  32. P. Szilaghi, ‘Problem 11676’, Gaz. Mat. (Bucharest) B22 (1971), 748.

    Google Scholar 

  33. Ju. Gerasimov, ‘Problem 489’, Mat. v. gkole 3 (1968), 65

    Google Scholar 

  34. Ju. Gerasimov, ‘Problem 489’, Mat. v. gkole 1 (1969), 78.

    Google Scholar 

  35. A. Gager, ‘A Family of Goniometric Inequalities’, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 338–352 (1971), 5–25.

    Google Scholar 

  36. A. Gager, ‘Another Family of Goniometric Inequalities, Ibid. No. 412–460 (1973), 207–216.

    Google Scholar 

  37. V. euénberger and Hj. Stocker, ‘Aufgabe 871’, Elem. Math. 36 (1981), 175

    Google Scholar 

  38. V. euénberger and Hj. Stocker, ‘Aufgabe 871’, Elem. Math. 37 (1982), 166–167.

    Google Scholar 

  39. O. P. Mavlo, M. S. Klamkin, J. C. Linders, and F. J. Ronday, ‘Problem 639’. Nieuw Arch. Wisk. 30 (1982), 116

    Google Scholar 

  40. O. P. Mavlo, M. S. Klamkin, J. C. Linders, and F. J. Ronday, ‘Problem 639’. Nieuw Arch. Wisk. 31 (1983), 87–89.

    Google Scholar 

  41. G. Tsintsifas, S. C. Chan, J. Garfunkel, B. Prielipp, and M. S. Klamkin, ‘Problem 653’, Crux Math. 7 (1981), 179

    Google Scholar 

  42. G. Tsintsifas, S. C. Chan, J. Garfunkel, B. Prielipp, and M. S. Klamkin, ‘Problem 653’, Crux Math. 8 (1982), 190–193.

    Google Scholar 

  43. G. Tsintsifas and V. N. Murty, ‘Problem 696’, Crux Math. 7 (1981), 302

    Google Scholar 

  44. G. Tsintsifas and V. N. Murty, ‘Problem 696’, Crux Math. 8 (1982), 316–318.

    Google Scholar 

  45. J. Garfunkel and W. Janous, ‘Problem 896’, Crux Math. 9 (1983), 313

    Google Scholar 

  46. J. Garfunkel and W. Janous, ‘Problem 896’, Crux Math. 11 (1985), 62.

    Google Scholar 

  47. A. Ber and L. Bankoff, ‘Problem E 2298’, Amer. Math. Monthly 78 (1971), 543–792

    Article  MathSciNet  Google Scholar 

  48. A. Ber and L. Bankoff, ‘Problem E 2298’, Amer. Math. Monthly 79 (1972), 520.

    Google Scholar 

  49. D. S. Mitrinović, J.E. Pečarić and W. Janous, Some Trigonometric Inequalities, RAD JAZU (Zagreb), 428 (1987), 103–127.

    Google Scholar 

  50. R. Bán, ‘Problem F 2406’, Köz Mat. Lapok 1983, No. 2, 77 and 1983, No. 7, 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mitrinović, D.S., Pečarić, J.E., Volenec, V. (1989). Some Trigonometric Inequalities. In: Recent Advances in Geometric Inequalities. Mathematics and Its Applications, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7842-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7842-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8442-2

  • Online ISBN: 978-94-015-7842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics