Skip to main content

Satellite Remote Sensing and Energy Balance Modelling for Water Balance Assessment in (Semi-) Arid Regions

  • Chapter
Estimation of Natural Groundwater Recharge

Part of the book series: NATO ASI Series ((ASIC,volume 222))

  • 564 Accesses

Abstract

The terms of the water balance in semi-arid regions may be monitored using different types of remotely sensed information from satellites. Such an integrated approach focusses on the possibilities of monitoring the soil moisture status and evapotranspiration over time from the combination of (a) thermal infrared, (b) visible and near infrared and (c) passive microwave remote sensing.

Application of such an approach is expected to give a better insight into the spatial and temporal variability of soil moisture content and evapotranspiration, and therefore may contribute to a better understanding of large scale recharge phenomena in semi-arid regions. Actual recharge depends on subsurface hydrogeological conditions for percolation to underlying aquifers, and may vary between localized concentrated percolation on the one hand and more regional diffuse percolation on the other. Thus a subsurface scaling problem comes to the fore which is beyond the remote sensing approach described in this paper which focusses on the average surface conditions at pixel scale, as a possible boundary condition for recharge.

The surface energy balance may be modelled using thermal infrared surface temperature observations and large scale near surface meteorological information, which allows the evapotranspiration rate to be estimated and the soil moisture status to be inferred together with stress conditions of the vegetation. This requires a remotely sensed estimate of the vegetation cover and biomass which may be derived from visible and NIR signatures. Separately, the soil moisture status of the top soil may be derived from passive microwave signatures.

This paper illustrates the approach of using all these data together and describes some aspects of an energy and mass balance model to be used in the data analysis for scarcely vegetated areas, such as in semi-arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asrar, G., Kanemasu, E.T., Miller, G.P. and Heiser, R.L. (1986): Light interception and leaf area estimates from measurements of grass canopy reflectance. IEEE Transactions in Geosc. & Rem. Sens. vol. GE-24 (1), 76–82.

    Article  Google Scholar 

  • Asrar, G., Fuchs, M., Kanemasu, E.T. and Hatfield, J.L. (1984): Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron. J. 76, 300–310.

    Article  Google Scholar 

  • Brutsaert, W. (1982): Evaporation into the atmosphere. Reidel, Hingham, Massachusets.

    Google Scholar 

  • Burke, H.K. & Schmugge, T.J. (1982): Effects of varying soil moisture contents and vegetation canopies on microwave emissions. IEEE Trans. Geosci. Remote Sensing, GE-20 (3), 268–274.

    Google Scholar 

  • Businger, J.A., Wijngaard, J.C., Izumi, IJ, and Bradley, E.F. (1971): Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189.

    Article  Google Scholar 

  • Camillo, P.J. & Gurney, R.J. (1986): A resistance parameter for bare-soil evaporation models. Soil Science, vol. 141 (2), 95–105.

    Article  Google Scholar 

  • Camillo, P.J., Gurney, R.J. and Schmugge, T.J. (1983): A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies. Water Res. Res. (19), 371–380.

    Google Scholar 

  • Choudhury, B.J., Schmugge, T.J., Newton, R.W. and Chang, A. (1979). Effect of surface roughness on the microwave emission from soils. J. Geophys. Res. 84 (C9), 5699–5705.

    Article  Google Scholar 

  • Cihlar, J. & Ulaby, F.T. (1974): Dielectric properties of soils as a function of moisture content. CRES Technical Report 177–47, Univ. of Kansas, Lawrence, Kansas.

    Google Scholar 

  • Clough, S.A., Kneizys, F.X., Davies, R., Gamache, R. and Tipping, R. (1980): Theoretical line shape for H2O vapor (application to the continuum). In: Deepak, A., et al. ( 1980 ). Atmospheric water vapor. Academic Press, London, 25–46.

    Google Scholar 

  • Curran, P.J. (1980): Multispectral remote sensing of vegetation amount. Prog. Phys. Geogr., 4, 315.

    Article  Google Scholar 

  • De Vries, J.J. (1984): Holocene depletion and active recharge of the Kalahari groundwater–a review and an indicative model. J. Hydrol., 70, 221–232.

    Article  Google Scholar 

  • De Vries, D.A. (1975): Heat transfer in soils. In: Heat and Mass Transfer in the Biosphere, Scipter, Washington, D.C. 1975.

    Google Scholar 

  • Dyer, A. (1974): A review of flux-profile relationships. Boundary Layer Meteorology, 7, 363–372.

    Article  Google Scholar 

  • Eagleson, P.S. (1970): Dynamic Hydrology. McGraw-Hill, New York.

    Google Scholar 

  • GRES-DGIS (1987): Groundwater Recharge Research Program, funded by the Dutch Governmental Organization for International Cooperation.

    Google Scholar 

  • Hatfield, J.L., Reginato, R.J. and Idso, S.B. (1983): Comparison of long-wave radiation calculation methods over the United States. Water Res. Res., Vol. 19, 285–288.

    Article  Google Scholar 

  • Holben, B.N., Tucker, C.J. and Fan, C.J. (1980): Spectral assessment of soybean leaf area and leaf biomass. Photogramm. Engin. and Remote Sensing, Vol. 45, 651.

    Google Scholar 

  • Jackson, T.J., Schmugge, T.J. and O’Neill, P. (1984): Passive microwave remote sensing of soil moisture from an aircraft platform. Remote Sensing of Env. (14), 135–151.

    Google Scholar 

  • Jaskii, C.O., Townshend, J.R.G., Holben, B.N. and Tucker, C.J. (1985): Analysis of the phenology of global vegetation using meteorological satellite data. Intern. Journal of Remote Sensing, Vol. 6 (8), 1271–1318.

    Article  Google Scholar 

  • Justice, C.O., Townshend, J.R.G., Holben, B.N. and Tucker, C.J. (1985): Analysis of the phenology of global vegetation using meteorological satellite data. Intern. Journal of Remote Sensing, vol. 6 (8), 1271–1318.

    Article  Google Scholar 

  • Menenti, M. (1984): Physical aspects and determination of evaporation in deserts applying remote sensing techniques, ICW, Wageningen, the Netherlands.

    Google Scholar 

  • NASA (1986): Earth Observation System (EOS). Data and Information System volume IIa. Technical memorandum 87777, NASA/GSFC.

    Google Scholar 

  • Newton, R.W. and Rouse, J.W. (1980): Microwave radiometer measurements of soil moisture content, IEEE Trans. Ant. Prop. AP-28, 680–686.

    Google Scholar 

  • Owe, M., Choudhury, B.J. and Ormsby, J.P. (1986): On large area variability in climate and climate-based soil moisture estimates. Intern Publ. NASA Godd. Space Flight Center, Hydrol. Services Branch, Greenbelt, MD.

    Google Scholar 

  • Philip, J.R. & De Vries, D.A. (1957): Moisture movement in porous materials under temperature gradients. EOS Trans. Geophys. Union 38, 222–228.

    Google Scholar 

  • Raffy, M. & Baker, F. (1985): An inverse problem occurring in remote sensing in the thermal infrared bands and its solutions. J. Geophys. Res. Vol. D3, No. 90, 5809–5819.

    Google Scholar 

  • Raffy, M. & Becker, F. (1986): A stable Interactive Procedure to obtain soil surface parameters and fluxes from satellite data. IEEE Transactions on Geosc. and Rem. Sensing, Vol. GE-24, No. 3, 327–333.

    Article  Google Scholar 

  • Raupach, M.R., Coppin, P.A. & Legg, B.J. (1986): Experiments on scalar dispersion within a model plant canopy. Part I: The turbulence structure. Boundary-Layer Meteovol. 35, 21–52.

    Article  Google Scholar 

  • Rosema, A. (1975): Simulation of the thermal behavior of bare soils for remote sensing purposes. In: Heat and Mass Transfer in the Biosphere, Scripta, Washington, D.C.

    Google Scholar 

  • Rosema, A., Bijleveld, J.H., Reiniger, P., Tassone, G., Gurney, R.J. and Blyth, K. (1978): Tellus, a combined surface temperature, soil moisture and evaporation mapping approach. Proc. Symposium on Remote Sensing (Manilla, the Philippines, 1978 ) Envir. Res. Inst. of Michigan.

    Google Scholar 

  • Ross, J. (1975): Radiation transfer in plant communities. In: Vegetation and the atmosphere, vol. 1 (Edited by: J.L. Monteith ( London: Acad. Press ), 13–52.

    Google Scholar 

  • Schmugge, T. (1985): Remote sensing of soil moisture. In: Hydrological Forecasting, M.G. Anderson & T.P. Burt (Eds.), Wiley & Sons, 101–124.

    Google Scholar 

  • Schmugge, T., O’Neill, P.E. and Wang, J.R. (1986): Passive microwave soil moisture research. IEEE Trans. Geosc. & Remote Sensing, vol. GE-24 (1), 12–22.

    Google Scholar 

  • Sellers, P.J. (1985): Canopy reflectance, photosynthesis and transpiration. Int. J. of Remote Sensing, vol. 5 (8), 1335–1372.

    Article  Google Scholar 

  • Smith, J.A. (1983): Matter-energy interaction in the optical region. In: Manual of Remote Sensing, Vol. I, Am. Soc. of Photogr., pp. 61–164.

    Google Scholar 

  • Soer, G.J.R. (1980): Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperature. Remote Sensing of Envir., (9), 27–45.

    Google Scholar 

  • Tucker, C.J., Holben, B.N., Elgin, J.H. and McMurtry, J.E. (1981): Remote sensing of total dry matter accumulation in winter wheat. Remote Sensing cf Environm. Vol. 11, 171.

    Article  Google Scholar 

  • Tucker, C.J., van Praet, C., Boerwinkel, E. and Gaston, A. (1983): Satellite remote sensing of total dry matter accumulation in the Senegalese Sahel. Remote Sensing of Envir., Vol. 13, 461.

    Article  Google Scholar 

  • Ulaby, F.T., Razini, M., Fung, A.K., and Dobson, C. (1981): The effects of vegetation cover on the microwave radiometric sensitivity to soil moisture. Remote Sensing Laboratory, Technical Report 460–6, University of Kansas, Lawrence, Kansas.

    Google Scholar 

  • Ulaby, F.T., Moore, R.K. and Fung, A.K. (1982): Microwave Remote Sensing. Vol. II, Addison-Wesley Publ. Comp., pp. 880 a.f.

    Google Scholar 

  • Van de Griend, A.A. (1987): A surface energy-balance model with a multi-layer canopy representation. NASA/Goddard Space Flight Center, Hydrol. Sciences Branch, Greenbelt, MD, Internal Report.

    Google Scholar 

  • Van de Griend, A.A. and Camillo, P.J. (1986): Estimation of soil moisture from diurnal surface temperature observations. Proc. IGARSS ‘86 Symposium, Zürich 8–11 September, 1986 (Ref. ESASP254), 1127–1230.

    Google Scholar 

  • Van de Griend, A.A., Camillo, P.J. and Gurney, R.J. (1985): Discrimination of soil physical parameters, thermal inertia and soil moisture, from diurnal surface temperature fluctuations. Water Res. Res. 21 (7), 997–1009.

    Article  Google Scholar 

  • Van de Griend, A.A. & Engman, E.T. (1985): Partial area hydrology and remote sensing. J. Hydrol. (81), 211–251.

    Google Scholar 

  • Wang, J.R. (1985): Effect of vegetation on soil moisture sensing observed from orbiting microwave radiometers. Remote Sensing of Env. (17), 141–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van de Griend, A.A., Gurney, R.J. (1988). Satellite Remote Sensing and Energy Balance Modelling for Water Balance Assessment in (Semi-) Arid Regions. In: Simmers, I. (eds) Estimation of Natural Groundwater Recharge. NATO ASI Series, vol 222. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7780-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7780-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8444-6

  • Online ISBN: 978-94-015-7780-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics