Skip to main content

The enzymology of in vitro DNA recombination

  • Chapter
Genetic Engineering Cloning DNA

Part of the book series: Genetic Engineering: Principles and Methods ((GEPM))

  • 163 Accesses

Abstract

The ease with which DNA molecules can now be joined in vitro is a consequence of the availability of restriction endonucleases, enzymes which recognise specific sequences in DNA and then cleave both strands of the duplex. These enzymes have been found in many prokaryotes and are likely to be responsible for the degradation of ‘alien’ DNA molecules, the indigenous DNA being protected from degradation by a modification enzyme, usually a methylase. Restriction endonucleases are responsible for the phenomenon of host controlled modification of bacteriophage, first described in the early 50s [reviewed in Ref. 1]. If phage λ, which has been propagated on E. coli strain K, is then allowed to infect E. coli strain B, the efficiency of the infectious process is very low. The phage produced from this infection can, however, reinfect E. coli strain B with high efficiency. Three genetic loci can be identified which control this system: hsdS, hsdM and hsdR. A polypeptide which governs the specificity of the system is determined by hsdS. The gene product of hsdM is the modification enzyme which also interacts with the product of the hsdR gene, the restriction endonuclease, in the cleavage process. In the above examples the phage grown on strain K would have been modified at sites specified by the K restriction-modification system. In the first infective cycle in E. coli B cells the B restriction-modification system detects the absence of B modification and degrades the infecting DNA. A small proportion of molecules are, however, methylated by the B modification system, and these survive restriction on the next infective cycle. This phenomenon has to be borne in mind when introducing foreign unmodified in vitro recombinant DNA into E. coli. In order for these molecules to survive the recipient strain should have defective hsdS or hsdR genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arber, W. (1965), Ann. Rev. Microbiol 19, 365.

    Article  CAS  Google Scholar 

  2. Meselson, M., Yuan, R., Heywood, J. (1972), Ann. Rev. Biochem. 41, 447.

    Article  CAS  Google Scholar 

  3. Roberts, R. J. (1980), Nucleic Acids Res. 8, r63.

    Article  CAS  Google Scholar 

  4. Mertz, J. E. and Davis, R. W. (1972), Proc. natn Acad. Sci. USA 69, 3370.

    Article  CAS  Google Scholar 

  5. Lehman, I. R. (1974), Science 186, 790.

    Article  CAS  Google Scholar 

  6. Sgaramella, V. and Khorana, H. G. (1972), J. mol. Biol. 72, 493.

    Article  CAS  Google Scholar 

  7. Glover, D. M., White, R. L., Finnegan, D. J. and Hogness, D. S. (1975), Cell, 5, 149.

    Article  CAS  Google Scholar 

  8. Maniatis, T., Hardison, R. C., Lacy, E., Lauer, J., O’Connel, C., Quon, D., Sim, G. K. and Efstratiadis, A. (1978), Cell 15, 687.

    Article  CAS  Google Scholar 

  9. Bahl, C. P., Marians, K. J., Wu, R., Stavinsky, J. and Narang, S. (1977), Gene 1 81.

    Article  Google Scholar 

  10. Scheller, R. H., Dickerson, R. E., Boyer, H. W., Riggs, A. D. and Itakura, K. (1977), Science 196, 177.

    Article  CAS  Google Scholar 

  11. Itakura, K., Natagiri, N., Bahl, C. P., Wightman, R. H. and Narang, S. A. (1975), J. Am. chem. Soc. 97, 7327.

    Article  CAS  Google Scholar 

  12. Katagiri, N. Itakura, K. and Narang, S. A. (1975), J. Am. chem. Soc. 97, 7332.

    Article  CAS  Google Scholar 

  13. Stavinski, J., Hozuni, T. and Narang, S. A. (1976), Can. J. Chem. 54, 670.

    Article  Google Scholar 

  14. Jackson, D. A., Symons, R. M. and Berg, P. (1972), Proc. natn Acad. Sci. USA. 69, 2904.

    Article  CAS  Google Scholar 

  15. Lobban, P. and Kaiser, A. D. (1973), J. mol. Biol. 78, 453.

    Article  CAS  Google Scholar 

  16. Wensink, P. C., Finnegan, D. J., Donnelson, J. E. and Hogness, D. S.(1974), Cell 3, 315.

    Article  CAS  Google Scholar 

  17. Roychoudhury, R., Jay, E. and Wu, R. (1976), Nucleic Acids Res. 3, 101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 D. M. Glover

About this chapter

Cite this chapter

Glover, D.M. (1980). The enzymology of in vitro DNA recombination. In: Genetic Engineering Cloning DNA. Genetic Engineering: Principles and Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7646-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7646-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-16170-4

  • Online ISBN: 978-94-015-7646-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics