Skip to main content

The Role of Gas-Phase Reactions during Methane Oxidative Coupling

  • Chapter
Methane Conversion by Oxidative Processes

Abstract

The objective of this chapter is to place in the proper perspective the effect of gas-phase reactions in the oxidative dimerization of methane. Obviously this concerns mainly the cofeed operation because gas-phase oxygen is not present in the cyclic mode in order to avoid extensive oxidation of the products. Furthermore, by gas-phase reactions we understand the homogeneous reactions that occur in the absence of a catalyst, because it has been proven convincingly by Lunsford’s group (Ito et al. 1987; Campbell, Morales, and Lunsford 1987) and by many others, that the dimerization reaction indeed occurs in the gas phase via surface-initiated methyl radicals. Lane and Wolf (Lane and Wolf 1988) were among the first to study systematically the homogeneous gas-phase dimerization of methane. Prior to our work, most reports were concerned with catalytic effects and very little had been reported regarding homogeneous reactions in the absence of catalysts. At about the same time that our results were published, two other reports appeared in the literature confirming that, indeed, gas-phase reactions were relevant (Asami et al. 1987; Hutchings, Scurrell, and Woodhouse 1988). Thereafter, the gas-phase work has been repeated in many laboratories and the results of our earlier report have been confirmed (van der Wiele, Geerts, and van Kasteren 1990; Hatano et al. 1990). Unfortunately, the effect of the gas-phase reactions has been misinterpreted by many authors and is now seen as the limiting factor in the yield that can be attained in this process. This is only partially true because the real limiting factor is the lack of selective low-temperature catalysts that can operate under conditions in which gas-phase reactions are not significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aika, K.-I., T. Moriyama, N. Takasaki, and E. Iwamatsu. 1986. Oxidative dimerization over BaCO3, SrCO3 and these catalysts promoted with alkali. J. Chem. Soc. , Chem. Commun. 1210.

    Google Scholar 

  • Asami, K., S.S. Hashimoto, T. Shikada, K. Fujimoto, and H.-O. Tominaga. 1986. Selective oxidative coupling of methane over supported lead oxide catalyst. Chem. Lett. 1233.

    Google Scholar 

  • Asami, K., F. Omata, K. Fujimoto, and H.-O. Tominaga. 1987. Oxidative coupling of methane in the homogeneous gas phase under pressure. J. Chem. Soc. , Chem. Commun. 1287.

    Google Scholar 

  • Bytyn, W., and M. Beams. 1986. Supported PbO catalysts for the oxidative coupling of methane—The effect of surface acidity of the support on C2+ selectivity. J. Appl. Catal. 28: 199.

    Article  CAS  Google Scholar 

  • Campbell, K.D., E. Morales, and J.H. Lunsford. 1987. Gas phase coupling of methyl radicals during the catalytic partial oxidation of methane. J. Am. Chem. Soc. 109: 7900–901.

    Article  CAS  Google Scholar 

  • Driscoll, D.J., W. Martir, J.-X. Wang, and J.H. Lunsford. 1985. Formation of gas-phase methyl radicals over MgO. J. Am. Chem. Soc. 107: 58–63.

    Article  CAS  Google Scholar 

  • Emesh Ali, I.T., and Y. Amenomiya. 1986. Oxidative coupling of methane over the oxides of group IIIA, IVA, and VA metals. J. Phys. Chem. 90: 4785.

    Article  Google Scholar 

  • Feng, Y., J. Niiranen, and D. Gutman. 1991. Kinetic studies of the catalytic oxidation of methane, I: Methyl radical production on 1% Sr/Al2O3. J. Phys. Chem. 95: 6558–63.

    Article  CAS  Google Scholar 

  • Geisbrecht, R.A., and T.E. Daubert. 1975. Chemical and physical processes of hydrocarbon combustion: Chemical processes. Ind. Eng. Chem. Process Des. Dey. 14: 159.

    Article  CAS  Google Scholar 

  • Hatano, M., P.G. Hinson, K.S. Vines, and J.H. Lunsford. 1990. Comments on “Blank reactor corrections in studies of the oxidative dehydrogenation of methane” by D.J.C. Yates and N. E. Zlotin. J. Catal. 124: 557.

    Article  CAS  Google Scholar 

  • Hinsen, W., W. Bytyn, and M. Baerns. 1984. Oxidative dehydrogenation and coupling of methane. In Proceedings of the 8th International Congress on Catalysis, Berlin, 1984, Vol. III, pp. 581–592.

    Google Scholar 

  • Hutchings, G.J., M.S. Scurrell, and J.R. Woodhouse. 1988. The role of gas phase reaction in the selective oxidation of methane. J. Chem. Soc. , Chem. Commun. 253.

    Google Scholar 

  • Imai, H., and T. Tagawa. 1986. Oxidative coupling of methane over LaA1O3. J. Chem. Soc. , Chem. Commun. 52.

    Google Scholar 

  • Ito, T., and J.H. Lunsford. 1985. Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide. Nature (London) 314: 721–722.

    Article  CAS  Google Scholar 

  • Ito, T., J.-X. Wang, C.-H. Lin, and J.H. Lunsford. 1987. Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. J. Am. Chem. Soc. 107: 5062.

    Article  Google Scholar 

  • Iwamatsu, E., T. Moriyama, N. Takasaki, and K.-I. Aika. 1987. Importance of the specific surface area of the catalyst in oxidative dimerization of methane over promoted magnesium oxide. J. Chem. Soc. , Chem. Commun. 19.

    Google Scholar 

  • Kalenik, Z., E.E. Miro, J. Santamaria, and E.E. Wolf. 1989. Transient and steady state studies of the gas phase and catalytic oxidative coupling of methane. Preprints of 3B Symposium on Methane Activation, 1989 Pacifichem Meeting, Honolulu, HI, p. 109.

    Google Scholar 

  • Kalenik, Z., and E.E. Wolf. 1990a. Comments on the effect of gas phase reactions on oxidative coupling of methane. J. Catal. 124: 566.

    Article  CAS  Google Scholar 

  • Kalenik, Z., and E.E. Wolf. 1991. Methane Oxidative Coupling over Lithium Promoted Lanthanum-Titanate Oxide. Natural Gas Conversion. Amsterdam: Elsevier Science Publishers, pp. 97–105.

    Google Scholar 

  • Kimble, J.B., and J.H. Kolts. 1986. Oxidative coupling of methane to higher hydrocarbons. Energy Prog. 6: 226.

    CAS  Google Scholar 

  • Labinger, J.A., and K.C. Ott. 1987. Mechanistic studies on the oxidative coupling of methane. J. Phys. Chem. 91: 2682.

    Article  CAS  Google Scholar 

  • Lane, G.S., Z. Kalenik, and E.E. Wolf. 1989. Methane oxidative coupling over titanate catalysts. J. Appl. Catal. 53: 183.

    Article  CAS  Google Scholar 

  • Lane, G.S., E.E. Miro, and E.E. Wolf. 1989. Methane oxidative coupling. II. A study of lithium-titania-catalyzed reactions of methane. J. Catal. 119: 161.

    Article  CAS  Google Scholar 

  • Lane, G.S., and E.E. Wolf. 1988. Methane utilization by oxidative coupling. I. A study of reactions in the gas phase during the cofeeding of methane and oxygen. J. Catal. 113: 144.

    Article  CAS  Google Scholar 

  • Lin, C.-H., K.D. Campbell, J.-X. Wang, and J.H. Lunsford. 1986. Oxidative dimerization of methane over lanthanum oxide. J. Phys. Chem. 90: 534–7.

    Article  CAS  Google Scholar 

  • Lin, C.-H., T. Ito, J.-X. Wang, and J.H. Lunsford. 1987. Oxidative dimerization of methane over magnesium and calcium oxide catalysts promoted with group IA ions: The role of [M+O-] centers. J. Am. Chem. Soc. 109: 4808.

    Article  CAS  Google Scholar 

  • Martin, G.A., A. Bates, V. Ducarme, and C. Mirodatos. 1989. Oxidative conversion of methane and C2 hydrocarbons on oxides: Homogeneous versus heterogeneous process. Appl. Catal. 47: 287.

    Article  CAS  Google Scholar 

  • Matsuura, I., Y. Utsumi, M. Nakai, and T. Doi. Chem. Lett. 1986. Oxidative coupling of methane over lithium-promoted zinc oxide catalyst. 1981.

    Google Scholar 

  • Miro, E.E. Z. Kalenik, J. Santamaria, and E.E. Wolf. 1990a. Transient studies on methane oxidative coupling over alkali-metal promoted titanate catalysts. Catal. Today 6: 511.

    Article  CAS  Google Scholar 

  • Miro, E.E., J. Santamaria, and E.E. Wolf. 1990a. Oxidative coupling of methane on alkali metal-promoted nickel titanate. I. Catalyst characterization and transient studies. J. Catal. 124: 451.

    Article  CAS  Google Scholar 

  • Miro, E.E., J. Santamaria, and E.E. Wolf. 1990b. Oxidative coupling of methane on alkali metal-promoted nickel titanate. II. Kinetic studies. J. Catal. 124: 465.

    Article  CAS  Google Scholar 

  • Moriyama, T., N. Takasaki, E. Iwamatsu, and K.-I. Aika. 1986. Oxidative dimerization of methane over promoted magnesium oxide catalysts. Important factors. Chem. Lett. 1165.

    Google Scholar 

  • Nelson, P.F., and N.W. Cant. 1990. Isotopic labelling studies of the mechanism of the catalytic oxidative coupling of methane. Preprints of 9th International Symposium on Natural Gas Conversion, 1990 Oslo Meeting, Oslo, Norway, p. 35.

    Google Scholar 

  • Otsuka, K., and K. Jinno. Inorg. Chim. Acta 1986. Kinetic studies on partial oxidation of methane over samarium oxides. 121: 237.

    Google Scholar 

  • Otsuka, K., K. Jinno, and A. Morikawa, 1986. Active and selective catalysts for the synthesis of C2H4 and C2H6 via oxidative coupling of methane. J. Catal. 100: 353.

    Article  CAS  Google Scholar 

  • Otsuka, K., and T. Komatsu. 1986. Conversion of methane to aromatic hydrocarbons by combination of catalysts. Chem. Lett., 1955.

    Google Scholar 

  • Otsuka, K., and T. Komatsu. 1987a. High catalytic activity of Sm2O3 for oxidative coupling of methane into ethane and ethylene. Chem. Lett. 483–484.

    Google Scholar 

  • Otsuka, K., and T. Komatsu. 1987b. Active catalysts in oxidative coupling of methane. J. Chem. Soc., Chem. Commun. 388.

    Google Scholar 

  • Otsuka, K., Q. Liu, M. Hatano, and A. Morikawa. 1986. Synthesis of ethylene by partial oxidation of methane over the oxides of transition elements with LiCI. Chem. Lett. 903.

    Google Scholar 

  • Otsuka, K., Q. Liu, and A. Morikawa. 1986. Active and selective catalysts in oxidative coupling of methane. Nickel oxides with salts of alkali metals. Inorg. Chim. Acta 118: L23.

    Article  CAS  Google Scholar 

  • Roos, J.A., S.J. Korf, R.H.J. Veehof, J.G. Van Ommen, and J.R.H. Ross. 1989. Reaction path of the oxidative coupling of methane over a lithium-doped magnesium oxide catalyst: Factors affecting the rate of total oxidation of ethane and ethylene. Appl. Catal. 52: 147.

    Article  CAS  Google Scholar 

  • Santamaria, J., Miro, E.E., and E.E. Wolf. 1991. Reactor simulation studies of methane oxidative coupling on a Na/NItiO3 catalyst. Ind. Eng. Chem. Res. 30: 1157–65.

    Article  CAS  Google Scholar 

  • Sofranko, J.A., J.J. Leonard, and C.A. Jones. 1987. The oxidative conversion of methane to higher hydrocarbons. J. Catal. 103: 302.

    Article  CAS  Google Scholar 

  • Tong, Y., M.P. Rosynek, and J.H. Lunsford. 1990. The role of sodium carbonate and oxides supported on lanthanide oxides in the oxidative dimerization of methane. J. Catal. 126: 291.

    Article  CAS  Google Scholar 

  • Tsang, W., and R.F. Hampson. 1986. Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. J. Phys. Chem. Ref. Data 15: 1087.

    Article  CAS  Google Scholar 

  • van der Wiele, K., J.W.M.H. Geerts, and J.M.N. van Kasteren. 1990. The role of heterogeneous reactions during the oxidative coupling of methane over Li/MgO catalysts. Catal. Today 6: 497.

    Article  Google Scholar 

  • Yamagata, N., S.S. Tanaka, S. Sasaki, and S. Okazaki. 1987. Oxidative coupling of methane over BaO mixed with CaO and MgO. Chem. Lett. 81.

    Google Scholar 

  • Yates, D.J., and N.E. Zlotin. 1990. Reply to Hatano, Hinson, Vines, and Lunsford’s comments on “Blank reactor correactions in Studies of the Oxidative Dehydrogenation of Methane.” J. Catal. 124: 562.

    Article  CAS  Google Scholar 

  • Yates, D.J., and N.E. Zlotin. 1988. Blank reactor coreactions in studies of the oxidative dehydrogenation of methane. J. Catal. 111: 317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. E. Wolf

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kalenik, Z., Wolf, E.E. (1992). The Role of Gas-Phase Reactions during Methane Oxidative Coupling. In: Wolf, E.E. (eds) Methane Conversion by Oxidative Processes. Van Nostrand Reinhold Catalysis Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7449-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7449-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7451-8

  • Online ISBN: 978-94-015-7449-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics