Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 177))

Abstract

Our conventional synthetic materials are isotropic substances, like metals, glass, ceramics, polymers. The special suitability for their structural application is achieved by morphological design of such isotropic materials and by combination of such material parts in macroscopic scale. Typical demonstration of this design principle is the frame of an older bridge (Fig.1) or the 100 years old tour d’Eiffel. If we consider the more advanced design strategy with such conventional isotropic materials, like in a modern bridge, the morphology of the isotropic material parts has changed, steel in form of multiwire cables replaces heavy steel carrier beams. But the basic principle remained the same (Fig.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fitzer, E. (1988) “Faserverstärkte Polymere–Stand und Perspektiven” Symposium Materialforschung, Hamm ( Westf. ), BMFT, 849–888

    Google Scholar 

  2. Menges, G. (1988) “Faserverbundwerkstoffe - Fertigung u. Eigenschaften” in Proc. of Verbundwerk ’88, Wiesbaden 1988, DEMAT Frankfurt, p. 2. 00–2. 49.

    Google Scholar 

  3. Fitzer, E. (1988) Ullmanns encyclopedia of Industrial Chemistry, vol. A 11, Fibres, 5th edition, p. 2–10.

    Google Scholar 

  4. Fitzer, E. and Heine, M. (1988) Ullmanns encyclopedia of Industrial Chemistry, vol. A 11, Fibres, 5th edition, p. 42–63.

    Google Scholar 

  5. Fabrication at Rocketyne International, by courtesy Dr. Bergmann (1983), DFVLR Braunschweig.

    Google Scholar 

  6. Jäger, H. (1986) Ph.D. Thesis, Fakultät für Chemie, Universität Karlsruhe

    Google Scholar 

  7. Kleinholz, R. (1988) Ullmanns Encyclopedia of Industrial Chemistry, vol. A 11, Fibres, 5th edition, p. 11–20.

    Google Scholar 

  8. Stenzenberger, H.D. (1985) “Thermosetting matrix systems and their influence for CFR” in “Carbon Fibres and Composites” edited by E. Fitzer, Springer-Verlag, Berlin, Heidelberg, New York, Tokio, p. 95–117.

    Google Scholar 

  9. Gillham J.K. (1979) Polym. Eng. Sci., 19 (10) 676–682

    Article  CAS  Google Scholar 

  10. Flory, P.G. (1956) Proc. Roy. Soc. 234, 60.

    Google Scholar 

  11. Gillham, J.K. (1981) in Developments in Polymer Characterization 3, J. V. Dawkins, ed., Applied Science Publishers, UK

    Google Scholar 

  12. Pilny, M. and Mlezira, J. (1977) Kunststoffe 67, 12.

    Google Scholar 

  13. Siebert, A.R. and Drake. R.S. (1982) 27th National SAMPE Symp.,739

    Google Scholar 

  14. Tanaka,Y. and Miko, T.F. (1973) Epoxy Resins, C.A.May and Y. Tanaka, Marcel Dekker, Inc. New York, Kap. 3

    Google Scholar 

  15. Morgan, R.J. (1979) J. Appl. Polym. Sci., 23, 2711

    Article  CAS  Google Scholar 

  16. Schneider, N.S.,Spronse, J.F., Haghauser, G.L. and Gillham, J.K. (1979) Polym. Eng. and Sci. 19, 304

    Google Scholar 

  17. Scheer, W. (1986) in: Heikler, H. “Verstärkte Kunststoffe in der Luft-und Raumfahrttechnik”, Verlag Kohlhammer, Stuttgart, 93–128

    Google Scholar 

  18. Kunststoffhandbuch Band VIII, Verlag Carl Hanser, München, p. 248316

    Google Scholar 

  19. Blumberg, H., “Fortschritte bei hochfesten Verstärkungsfasern aus Kohlenstoff und Aramid” in Proc. of Verbundwerk ’88, Wiesbaden 1988, DEMAT Frankfurt, p. 6. 00.

    Google Scholar 

  20. Farth, R.A. and Eckert, C.H. (1988) 33rd International SAMPE Symposium, Anaheim, 369–380.

    Google Scholar 

  21. Fitzer, E., Heine, M. and Jacobsen, G. (1986) “Kohlenstoffasern” in: Heikler, H. “ Verstärkte Kunststoffe in der Luft-und Raumfahrttechnik”, Verlag Kohlhammer, Stuttgart, p. 93–128.

    Google Scholar 

  22. Stenzenberger, H.D., (1988) 33rd Int. SAMPE Symp. Anaheim.

    Google Scholar 

  23. Boeing Materials Specification XBMS 8–276 C, Boeing Commercial Airplane Co.

    Google Scholar 

  24. Odagiri, N., Muraki, T. and Tobukaro, K., (1988) 33rd International SAMPE Symposium, Anaheim, 272–283.

    Google Scholar 

  25. ICI in International SAMPE Symposium

    Google Scholar 

  26. Fitzer, E., (1988) “Reinforcement for Composite Materials”, A.R. Bunsell, Elsevier Uitgeversmaatschappij, Amsterdam, p. 37–148.

    Google Scholar 

  27. Pott, F. (1978) Staub,-Reinhalt. Luft, 38, 181

    Google Scholar 

  28. Fitzer, E. (1982) “Polymer Carbon, the Start into a New Age of Polymer Application”, Proc. 11th Bienn.Polym.Symp., Puerto Rico, Contemporay Topics in Polymer Sci. 5, 101–138

    Google Scholar 

  29. Böder, H. (1986) Proceedings of Carbon ’86, Baden-Baden, DKG Bad Honnef, 608–610.

    Google Scholar 

  30. Newsweek, 1988.

    Google Scholar 

  31. Menges, G., (1988) “Faserverbundwerkstoffe - Grundlagen, Möglichkeiten, Grenzen” in Symposium Materialforschung, Hamm ( Westf. ), BMFT.

    Google Scholar 

  32. private communication

    Google Scholar 

  33. Füssinger, R. (1981) “The First Aluminum CFRP Bridge” in Processing and Uses of Carbon Fibre Reinforced Plastics, VDI-Verlag, Düsseldorf, 215–277.

    Google Scholar 

  34. ELF oil company, private information.

    Google Scholar 

  35. Dharan, C.K.H. and Thoms, J. (1979) in: 24th Int. SAMPE Symp., San Francisco, 1550–1566.

    Google Scholar 

  36. AEROSPATIALE, Division Système Balistiques et Spatiaux, Les Mureaux, France, private information.

    Google Scholar 

  37. Surber, W. (1984) Proceedings of World Conference on Resource Materials Conversion, CHEMRAWN III, Den Haag, Editor D.J. Eck (Vlaardingen, The Netherlands, Unilever Research), 3.III Enduser/supplier 2/1–2/12.

    Google Scholar 

  38. MKM (1983) Automotive Industries, p. 21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fitzer, E. (1990). Carbon Fibres and Composites. In: Figueiredo, J.L., Bernardo, C.A., Baker, R.T.K., Hüttinger, K.J. (eds) Carbon Fibers Filaments and Composites. NATO ASI Series, vol 177. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-6847-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-6847-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6849-4

  • Online ISBN: 978-94-015-6847-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics