Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 177))

Abstract

Long before the invention of the electron microscope allowed the discovery of filamentous carbon, or before the march of polymer technology empowered engineers to make the first rayon-based carbon fibers, primitive technology existed for the preparation of vapor-grown fibers. The 1889 patent of Hughes and Chambers [1] which describes the growth of “hair-like carbon filaments” utilized a feedstock of hydrogen and methane pyrolyzed in an iron crucible. The fibers were thought to be suitable for electric light bulb filaments, but lack of modern process controls made them uncompetitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hughes, T. V. and Chambers, C. R. (1889) Manufacture of Carbon Filaments’, U.S. Patent No. 405, 480.

    Google Scholar 

  2. Davis, W. R., Slawson, R. J. and Rigby, G. R. (1953) An Unusual Form of Carbon’, Nature 171, 756.

    Article  CAS  Google Scholar 

  3. A good review is: Baker, R. T. K. and Harris, P. S. (1978) The Formation of Filamentous Carbon’, Chemistry and Physics of Carbon Vol. 14, p. 83; Walker, P. L. and Thrower, P. A., Eds., Dekker, New York (1978).

    Google Scholar 

  4. Iley, R. and Riley, H. L. (1948) The Deposition of Carbon on Vitreous Silica’, Jour. Chem. Soc. London II, 1362.

    Google Scholar 

  5. Hillert, M. and Lang, N. (1958) The Structure of Graphite Filaments’, Zeit Krist. 111, 2 4.

    Google Scholar 

  6. Koyama, T. (1972) Formation of Carbon Fibers from Benzene’, Carbon 10, 757.

    Article  CAS  Google Scholar 

  7. Koyama, T and Endo, M., (1973) Structure and Growth Processes of Vapor-Grown Carbon Fibers’, (in Japanese), O. Buturi 42, 690.

    Google Scholar 

  8. Oberlin, A., Endo, M. and Koyama, T. (1976) Filamentous Growth of Carbon through Benzene Decomposition’, J. Cryst. Growth, 32, 335.

    Google Scholar 

  9. Endo, M. and Komaki, K. (1983) Formation of Vapor-Grown Carbon Fibers By Seeding Method of Metal Ultra-Fine Particles’, Extended Abstracts, 16th Biennial Conference on Carbon, San Diego, CA, 523.

    Google Scholar 

  10. Dresselhaus, M. S., Dresselahus, G., Surihara, K., Spain, I. L., and Goldberg, H. A. (1988), Graphite Fibers and Filaments Springer, Berlin.

    Google Scholar 

  11. Katsuki, H., Matsunaga, K., Egashira, M., and Kawasumi, S. (1981) `Formation of Carbon Fibers from Napthalene on Some Sulfur Containing Substrates’, Carbon 19, 148.

    Article  CAS  Google Scholar 

  12. Tibbetts, G. G. (1983) Carbon Fibers Produced by Pyrolysis of Natural Gas in Stainless Steel Tubes’, Appl. Phys. Lett. 42, 666.

    Google Scholar 

  13. Tibbetts, G. G. (1984) From Catalysis to Chemical Vapor Deposition: Graphite Fibers from Natural Gas’, Extended Abstracts, Graphite Inter-calation Compounds, Eklund, P. C., Dresselhaus, M. S., and Dresselhaus, G., Eds., Materials Research Society, Pittsburgh, PA, p. 196.

    Google Scholar 

  14. Tibbetts, G. G., Devour, M. G. and Rodda, E. J. (1987) An Adsorption-Diffusion Isotherm and its Application to the Growth of Carbon Filaments on Iron Catalyst Particles’, Carbon 25, 367.

    Article  CAS  Google Scholar 

  15. Benissad, F., Gadalle, P., Coulon, M. and Bonnetain, L. (1988) `Formation de Fibres de Carbone a Partir du Methane: I Croissance Catalytique et Epaississement Pyrolytique’, Carbon 26, 61.

    Google Scholar 

  16. Benissad, F., Gadalle, P., Coulon, M. and Bennetain, L. (1988) `Formation de Fibres de Carbone a Partir du Methane II: Germination du Carbone et Fusion des Particules Catalytiques’, Carbon 26, 425.

    Google Scholar 

  17. Kaae, J. L. (1985) The Mechanism of the Deposition of Pyrolytic Carbon’, Carbon 23, 665 (1985).

    Google Scholar 

  18. Tibbetts, G. G. (1985) Lengths of Carbon Fibers Grown from Iron Catalyst Particles in Natural Gas’, J. Cryst. Growth 73, 431.

    Google Scholar 

  19. Tibbetts, G. G. and Devour, M. G. (1986) Regulation of Pyrolysis Methane Concentration in the Manufacture of Carbon Fibers’, U.S. Patent No. 4, 565, 684.

    Google Scholar 

  20. Tibbetts, G. G. and Rodda, E. J. (1988) High Temperature Limit for the Growth of Carbon Filaments on Catalytic Iron Particles’, Mat. Res. Soc. Symp. Proc. 111, 49.

    Google Scholar 

  21. Koyama, T. and Endo, M. T. (October 22, 1983 ) Method for Manufacturing Carbon Fibers by a Vapor Phase Process’, Japanese Patent No. 1982–58, 966.

    Google Scholar 

  22. Hatano, M., Ohsaki, T. and Arakawa, K. (1985) Graphite Whiskers by New Process and Their Composites’, Advancing Technology in Materials and Processes, Science of Advanced Materials and Processes, National SAMPE Symposium 30, 14-67.

    Google Scholar 

  23. Tibbetts, G. G. and, Beetz, Jr., C. P. (1987) Mechanical Properties of Vapor-Grown Carbon Fibers’, J. Phys. D:Appl. Phys. 20, 292.

    Google Scholar 

  24. Chen, K-J. and Diefendorf, R. J. (1985) ‘A Theoretical Calculation of Residual Stresses in Carbon Fibers’, Extended Abstracts, 17th Biennial Conference on Carbon, American Carbon Society, Lexington, KY, p. 387.

    Google Scholar 

  25. Speck, J. S. and Dresselhaus, M. S. (1988) Graphitization of Thin Benzene Derived Carbon Fibers’, Graphite Intercalation Compounds: Science and Applications, M. Endo, M. D. Dressel-haus, G. Dresselhaus, Eds., Materials Research Society, p. 169.

    Google Scholar 

  26. Endo, M., Koyama, T. and Hishiyama, Y. M. (1976) Structural Improvement of Carbon Fibers Prepared from Benzene’, Japan. J. Appl. Phys. 15, 2073.

    Google Scholar 

  27. Tibbetts, G. G., Endo, M. and Beetz, Jr., C. P. (1986) ‘Carbon Fibers Grown from the Vapor Phase: A Novel Material’, SAMPE J. 22, 30.

    Google Scholar 

  28. Curtis, G. J., Milne, J. M. and Reynolds, W. N. (1968) ‘NonHookean Behavior of Strong Carbon Fibers’, Nature 220, 1024.

    Article  Google Scholar 

  29. Weibull, W. (1951) ‘A Statistical Distribution Function of Wide Applicability’, J. Appl. Mech 18, 293.

    Google Scholar 

  30. Kandani, N., Coulon, M. and Bonnetain, L. (1984) ‘Vapor Grown Carbon Fibers by Methane Decomposition’, Extended Abstracts, International Carbon Conference, Bordeaux, France, p. 142.

    Google Scholar 

  31. Reynolds, W. N. and Sharp, J. V. (1974) ‘Crystal Shear Limit to Carbon Fibre Strength’, Carbon 12, 103 (1974).

    Google Scholar 

  32. Ruland, W. (1969) ‘The Relationship Between Preferred Orientation and Young’s Modulus of Carbon Fibers’, Appl. Polymer Symp. No. 9, p. 293.

    Google Scholar 

  33. Didchenko, R. (1976), Technical Report AFML-TR-73–147 part I V, Union Carbide Corporation, Cleveland, OH.

    Google Scholar 

  34. Hawthorne, H. M., Baker, C., Bentall, R. H. and Linger, K. (1970) ‘High Strength, High Modulus Graphite Fibers From Pitch’, (1970), Nature 227, 946.

    Article  CAS  Google Scholar 

  35. Manocha, L. M. and Bahl, O. P. (1980) ‘Role of Oxygen During Thermal Stabilization of PAN Fibers’, Fibre Sci. Technol. 13, 199.

    Google Scholar 

  36. Yetter, W. E. and Beetz, Jr. (1985) The Mechanical Properties of Carbon Fibers Grown by the Pyrolysis of Natural Gas’, Extended Abstracts, 17th Biennial Conference on Carbon, Lexington, KY, p. 291.

    Google Scholar 

  37. Tibbetts; G. G., Beetz, Jr., C. P. and Olk, C. H. (1986) Mechanical Properties of Heat-Treated Vapor-Grown Fibers’, Extended Abstracts, Graphite Intercalation Compounds, ed. by M. S. Dresselhaus, G. Dresselhaus, S. A. Solin, Materials Research Society, Pittsburgh, PA, p. 126.

    Google Scholar 

  38. Endo, M. and Koyama, T. (1980) Heat Resistance Properties of Vapor-Grown Carbon Fibers in Air’, Tanso 101, 59.

    Article  CAS  Google Scholar 

  39. Smith, G. (1984) Oxidation Resistance of Pyrolytically Grown Carbon Fibers’, Carbon 22, 477.

    Article  CAS  Google Scholar 

  40. Heremans, J. (1985) Electrical Conductivity of Vapor-Grown Fibers’, Carbon 23, 431.

    Article  CAS  Google Scholar 

  41. Heremans, J. and Beetz, Jr., C. P. (1985) Thermal Conductivity and Thermopower of Vapor-Grown Carbon Fibers’, Phys. Rev. B 32, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tibbetts, G.G. (1990). Vapor-Grown Carbon Fibers. In: Figueiredo, J.L., Bernardo, C.A., Baker, R.T.K., Hüttinger, K.J. (eds) Carbon Fibers Filaments and Composites. NATO ASI Series, vol 177. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-6847-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-6847-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6849-4

  • Online ISBN: 978-94-015-6847-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics