Skip to main content

Carbon Based Materials in Medical Applications

  • Chapter
Carbon Fibers Filaments and Composites

Part of the book series: NATO ASI Series ((NSSE,volume 177))

Abstract

Since the mid-1970s much research work in Europe has been directed toward utilizing the advantages of carbon and carbon based materials for medical applications, specifically for the use as components for total hip joint replacements. This work was initiated by the successful introduction of carbon as artificial heart valves [1, 2] and the problems with metal implants at that time. The advantages of carbon like biocompatibility, sterilizability, chemical inertness, sufficient mechanical and excellent tribological properties had been obvious for such applications. Furthermore the possibility exists to increase the material strength and match the stiffness of implants, like hip joint stems, to the biomechanical needings by using carbon fibre reinforcements. Developments were initiated with many carbon based materials like carbon/carbon composites, carbon/polymer composites (different polymers like epoxy, triacine, polysulfone), fine grained bulk carbons, carbon/siliconcarbide composites and carbon fibres [3–10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bokros, J.C. (1977), “Carbon biomedical devices”, J. Carbon 15, 353–371

    Article  Google Scholar 

  2. Bokros, J.C., “Carbon in medical devices”, in P. Vinvenzini (ed.), Ceramics in surgery, Elsevier, Amsterdam

    Google Scholar 

  3. Brückmann, H. and Hüttinger, K.J. (1980), “Carbon, a promising material in endoprosthetics, Part 1: The Carbon materials and their mechanical properties”, Biomaterials 1, 67–72

    Article  Google Scholar 

  4. Brückmann, H., Keuscher, G., Hüttinger, K.J. (1980), “Carbon, promising material in endoprosthetics, Part 2: Tribological properties”, Biomaterials 1, 73–81

    Article  Google Scholar 

  5. Brückmann, H. (1979), “Entwicklung und anwendungsspezifische Untersuchung von Kohlenstoff-Werkstoffen für Endoprothesen am Beispiel des künstlichen Hüftgelenkes”, Dissertation, Universität Karlsruhe

    Google Scholar 

  6. Hüttner, W., Hüttinger, K.J., (1983) “The Use of Carbon as an Implant Material, Reprint from ”The Cementless Fixation of Hip Endprostheses, E. Morscher (ed. ), Springer Verlag

    Google Scholar 

  7. Christel, P., Bernard, P.-F., Menuier, A. (1984), “Hip stems made of carbon-fibre-reinforced-carbon materials-A mechanical evaluation”, in Proc. Trans. of 2nd World Congress on Biomaterials, Washington D.C.

    Google Scholar 

  8. Scheer, W. (1980), “Kohlenstoffaserverstärktes Epoxidharz-ein Werkstoff für Humanimplantate, Verarbeiten und Anwenden kohlenstofffaserverstärkter Kunststoffe”, VDI-Verlag Kunststofftechnik, Düsseldorf

    Google Scholar 

  9. Gohl, W. (1982) “Kohlefaserverstärkter Zweikomponenten-Werkstoff für Knochenersatz”, Forschungsbericht BMFT-FB-T82–036, April 1982, Fachinformationszentrum Karlsruhe

    Google Scholar 

  10. Jenkins, D.H.R., Forster, I.W., McKibbin, B., Ralis, Z.A. (1977), “Induction of tendon and ligament formation by carbon implants”, J. Bone Joint Surg (Br) 59, 1

    Google Scholar 

  11. Jenkin, G.M., Grigson, C.J. (1979), “The fabrication of artifacts out of glassy carbon for biomedical applications”, J. Biomed Mater Res. 13, 371–394

    Article  Google Scholar 

  12. Grenoble, D.E., Voss, R. (1976), “Materials and Designs for implant industry”, Biomater Med Devices Aritf. Organs 4 (2), 133–169

    CAS  Google Scholar 

  13. Carbomedics Corp. (1982), Company brochure

    Google Scholar 

  14. Fitzer, E., Hüttner, W. (1977), “Preparation of pyrocarboncoated carbonfibres for the use in ligament replacement”, Ext. Abstracts 13th Biennal Conf. on Carbon, Irvine, Calif., 180

    Google Scholar 

  15. Jenkins, D.H.R. (1978), “The Repair of Cruciate Ligaments with Flexible Carbon Fibre”, J. Bone Joint Surg. (Br.) 60 (4), 520

    Google Scholar 

  16. Alexander, H., Strauchler, I.D., Weiss, A.B., Mayott, C.W., Parsons, J.R. (1978), “Carbon-Polymer Composites for Tendon and Ligament Replacement”, Trans. 4th Ann Mtg., Soc. For Biocoat., 123

    Google Scholar 

  17. Wolter, D., Burri, C., Helbing, G., Mohr, W., Rüter, A. (1978), “Die Reaktion des Körpers auf implantierte Kohlenstoffmikropartikel”, Arch. Orthop. Traum. Surg. 91, 19–29

    Google Scholar 

  18. Burri, C., Claes, L., Heling, G. (1985), Bandersatz mit Kohlenstoffasern, Springer-Verlag Berlin, Heidelberg, New York, Tokio

    Google Scholar 

  19. Burri, C., Claes, L. (1986), “Alloplastic Ligament Replacement”, Hans Huber Publishers Bern, Stutgart, Vienna

    Google Scholar 

  20. Claes, L., Burri, C., Neugebauer, R., Wolter, D., Rose, P. (1983), “The Elasticity of Various Carbon Fibre Ligament Prostheses”, 2nd Meeting of the European Society of Biomechanics

    Google Scholar 

  21. Claes, L., Neugebauer, R. (1983), “Mechanical Properties of Ligament Replacement with Carbon Fibres”, in C. Burri, L. Claes (eds.), Alloplastic Ligament Replacement, Hans Huber Publishers Bern, Stuttgart, Vienna 26, 58–62

    Google Scholar 

  22. Woo, S.L., Atkeson, W.H., Coutts, R.D. Matthews, J.V., Amiel, D., (1974), “Potential application of graphite-fibre and methylmetacrylate resin composites as internal fixation plates”, J. Biomed. Mater. Res. 8, 321–338

    Google Scholar 

  23. Claes, L., Etter, Ch. (1984), “Neue Verbundmaterialien für Osteosyntheseplatten”, Dtsch. Verband für Materialprüfung e.V., 83–96

    Google Scholar 

  24. Atkeson, W.H., Woo, S.L., Coutts, R.D., Matthews, J.V., AMiel, D., (1975), “Quantitative Histological Evaluation of Early Fracture Healing of Cortical Bones Immobilized by Stainless Steel and Composite Plates”, Calcif. Tiss. Res. 19, 27–37

    Google Scholar 

  25. Fitzer, E., Hüttner, W., Claes, L., Kinzl, L. (1980), “Torsional strength of carbonfibre-reinforced carbon for the application as internal bone plates”, Carbon 18, 383–387

    Article  CAS  Google Scholar 

  26. Amoco Corp., Product brochures UDEL P1700 and Reports from M. Spector

    Google Scholar 

  27. Claes, L. (1988), Kohlenstoffimplantate in der Osteosynthese, Hefte zur Unfallheilkunde 200, 625–633

    Google Scholar 

  28. Burri, C., Claes, L., Wörsdörfer, 0. (1986), Osteosynthese an der Wirbelsäule mit individuell gearbeiteter Platte aus kohlenstofffaserverstärktem Polysulfom

    Google Scholar 

  29. Wörsdörfer, 0., Burri, C., Claes, L. (1988) “Osteosynthese an der Wirbelsäule mit individuell gearbeiteter Platte aus kohlenstofffaserverstärktem Polysulfon”, Hefte zur Unfallheilkunde 200, 59–60

    Google Scholar 

  30. Claes, L., Palme, U., Palme+, E., Kirschbaum+, U. (1982), “Biomechanical and mathematical investigations concerning stress protection of bone beneath internal fixation plates”, in R. Huiskes, D. Van Campen and J. De Wijn (eds.), Biomechanics: Principles and Applications, Martinus Nijhoff Publishers, The Hague/Boston/London, Printed in the Netherlands, 325 ff.

    Google Scholar 

  31. Claes, L., Hüttner, W., Weiss, R. (1986), “Mechanical properties of carbon fibre reinforced polysulfone plates for internal fracture fixation”, in P. Christel, A. Meunier and A.J.C.Lee (eds.), Biological and Biomechanical Performance of Biomaterials, Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  32. Timoshenko, S. (1934), Theory of elasticity, Mc Graw Hill, New York

    Google Scholar 

  33. Hüttner, W., Keuscher, G., Hüttinger, K.J. (1982), “In vitro impact tests of carbon/siliconcarbide double cup prostheses”, in P. Vincenzini (ed.), Ceramics in Surgery, Elsevier Science Publisher

    Google Scholar 

  34. Hüttner, W., Weiss, R., Rettig, H., Weber, U. (1984), “Entwicklungstendenzen von Implantatwerkstoffen auf Kohlenstoff-basis”, Berichtsband DVM-Tagung 5. Vortragsreihe des Arbeitskreises Implantate, Berlin, 31–37

    Google Scholar 

  35. Hüttner, W., Keuscher, G., Nietert, M. (1984), “Carbonfibrereinforced Polysulfone-Thermoplastic Composites”, in P. Ducheyne, G. Van der Perre and A.E. Aubert (eds.), Biomaterials and Biomechanics 1983, Elsevier Science Publ., Amsterdam

    Google Scholar 

  36. Ungethüm, M. (1978), “Technologische und Biomechanische Probleme der Hüf t-und Kniealloarthroplastik”, in Aktuelle Probleme der Chirurgie und Orthopädie, Bd. 9, Huber, Bern

    Google Scholar 

  37. Nietert, M., Hüttner, W., Weiss, R., Cloos, A. (1986), Vergleichende experimentelle Untersuchungen an Hüf tgelenksendoprothesen aus Metall, CFK und CFC unter Berücksichtigung verschiedener Lockerungsraten und Fehlstellungen in der Sagittal-und Frontalebene, Berichtsband DVM-Tagung, Berlin

    Google Scholar 

  38. Hüttner, W., Nietert, M., Weiss, R., Cloos, A., Kehr, D. (1986), “Spannungs-und Dehnungsanalysen an CFC-Hüftgelenksschäften”, Sprechsaal 6, 467 ff.

    Google Scholar 

  39. Nietert, M., Hüttner, W. (1986), “Analyse statischer Spannungszustände von Hüftgelenksschäften in der Frontal-und Sagittalebene unter Berücksichtigung verschiedener Lockerungsraten und Einbettneigungen”, Biomedizin.Technik, Bd. 31, Heft 12, 287

    Google Scholar 

  40. Hüttner, W., Weiss, R., Nietert, M., (1988), “Mechanisch hochbelastete Endoprothesen aus C-faserverstärkten Composites”, in G. Ondracek (ed.), Verbundwerkstoffe Stoffverbunde in Technik und Medizin, Bd. 2: Medizin, DGM-Informationsgesellschaft, Verlag

    Google Scholar 

  41. Kirschner,H., Geiger, G. (1985), “Mikromorphologische Beobachtungen der Nervneubildung in der periimplantären Gewebszone nach autoalloplastischer Zahnreplantation mit kohlenstoffaserverstärktem Polysulfon an Cynomolgus fascicularis”, Dtsch. Z. Mund Kiefer GesichtsChir 9, 331–335

    Google Scholar 

  42. Herberhold, C., Sprüth, A., Mudring-Mockenhaupt, C. (1987), Middle ear ossicle replacement with graphite prostheses, Ext. Abstract Intern.Symp. on Transplants and Implants in Otology, Venedig

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huettner, W., Claes, L.E. (1990). Carbon Based Materials in Medical Applications. In: Figueiredo, J.L., Bernardo, C.A., Baker, R.T.K., Hüttinger, K.J. (eds) Carbon Fibers Filaments and Composites. NATO ASI Series, vol 177. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-6847-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-6847-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6849-4

  • Online ISBN: 978-94-015-6847-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics