Skip to main content

Inductively coupled plasma-atomic emission spectrometry

  • Chapter
A Handbook of Silicate Rock Analysis
  • 600 Accesses

Abstract

Optical emission spectrometry is a well proven analytical technique, in widespread use for the last 30 to 40 years. However, early devices available as optical emission sources (arc, spark or dc electrical discharges) had a number of disadvantages that prevented their widespread use for fully quantitative analysis of silicate samples. This situation changed dramatically during the mid-1960s with the development of inductively coupled argon plasma as an emission source for spectroscopic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbey, S. (1983) Studies in ‘standard samples’ of silicate rocks and minerals 1969–1982. Geol. Survey Canada, Paper 83–15. Anderson, H., H. Kaiser and B. Meddings (1981) High precision ((0.5% RSD) in routine analysis by ICP using a high pressure (200 psig) cross-flow nebuliser. In: R.M. Barnes (ed.), Developments in Atomic Plasma Spectrochemical Analysis. Heyden, London, 251–277.

    Google Scholar 

  • Anderson, T.A., A.R. Forster and M.L. Parsons (1982) ICP emission spectra: II, alkaline earth elements. Appl. Spectrosc. 36, 504509.

    Google Scholar 

  • Babat, G.I. (1947) Electrodeless discharges and some allied problems. J. Inst. Elect. Eng. 94, 27–37.

    Google Scholar 

  • Babington, R.S. (1973) Popular Sci. Mag. 102.

    Google Scholar 

  • Bankston, D.C. and N.S. Fisher (1977) Atomic emission spectrometer/spectrograph for the determination of barium in micro amounts of diatom ash. Anal. Chem. 49, 1017–1023.

    Article  Google Scholar 

  • Bankston, D.C., S.E. Humphries and G. Thompson (1979) Major and minor oxide and trace element determination in silicate rocks by direct current plasma optical emission echelle spectrometry. Anal. Chem. 51, 1218–1225.

    Article  Google Scholar 

  • Barnes, R.M. and R.G. Schleicher (1975) Computer simulation of RF induction-heated argon plasma discharges at atmospheric pressure for spectrochemical analysis—I preliminary investigations. Spectrochim. Acta 30B, 109–134.

    Article  Google Scholar 

  • BDH (1983) Laboratory Chemicals and Biochemicals. BDH Chemicals, Poole, Dorset.

    Google Scholar 

  • Blades, M.W. and G. Horlick (1981) The vertical and spatial characteristics of analyte emission in the inductively coupled plasma. Spectrochim. Acta 36B, 861–880.

    Article  Google Scholar 

  • Bolton, A., J. Hwang and A.V. Voet (1983) The determination of scandium, yttrium and selected rare earth elements in geological materials by inductively coupled plasma optical emission spectrometry. Spectrochim. Acta 38B, 165–174.

    Article  Google Scholar 

  • Borsier, M. and M. Garcia (1983) Analyse automatique d’échantillons géologiques par plasma ICP. Spectrochim. Acta 38B, 123–127.

    Article  Google Scholar 

  • Boulos, M.I. and R.M. Barnes (1981) Induction plasma modelling: state of the art. In: R.M. Barnes (ed.), Developments in Atomic Plasma Spectrochemical Analysis. Heyden, London, 20–34.

    Google Scholar 

  • Boumans, P.W.J.M. (1978) ICP atomic emission spectrometry: a multi-element analysis method for liquids and dissolved solids.

    Google Scholar 

  • Sci. Industry 12, 1–6.

    Google Scholar 

  • Boumans, P.W.J.M. (1980) Line Coincidence Tables for Inductively Coupled Plasma Atomic Emission Spectroscopy. Pergamon, Oxford/Elmsford, New York.

    Google Scholar 

  • Boumans, P.W.J.M. (1982) Comment on a proposed excitation mechanism in argon ICPs. Spectrochim. Acta 37B, 75–82. Boumans, P.W.J.M. (1984) Line Coincidence Tables for Inductively Coupled Plasma Atomic Emission Spectroscopy ( 2nd edn. ). Pergamon, Oxford (in two volumes).

    Google Scholar 

  • Boumans, P.W.J.M. and F.J. de Boer (1975) Studies of an inductively-coupled high frequency argon plasma for optical emission spectrometry. II: Compromise conditions for simultaneous multi-element analysis. Spectrochim. Acta 30B, 309–334.

    Google Scholar 

  • Boumans, P.W.J.M. and F.J. de Boer (1976) Studies of a radio-frequency inductively coupled argon plasma for optical emission spectrometry. III: Interference effects under compromise conditions for simultaneous multi-element analysis. Spectrochim. Acta 31B, 355–375.

    Google Scholar 

  • Boumans, P.W.J.M. and M. Bosveld (1979) A tentative listing of the sensitivities and detection limits of the most sensitive ICP lines as derived from the fitting of experimental data for an argon ICP to the intensities tabulated for the NBS copper arc. Spectrochim. Acta 34B, 59–72.

    Article  Google Scholar 

  • Brenner, I.B., E.A. Jones, A.E. Watson and T.W. Steele (1984) The application of a N2-Ar medium power ICP and cation exchange chromatography for spectrometric determination of the rare earth elements in geological materials. Chem. Geol. 45, 135–148.

    Article  Google Scholar 

  • Brenner, I.B., A.E. Watson, T.W. Steele, E.A. Jones and M. Gon-calves (1981) Application of an argon-nitrogen inductively coupled radiofrequency plasma (ICP) to the analysis of geological and related materials for their rare earth contents. Spectrochim. Acta 36B, 785–797.

    Google Scholar 

  • Broekaert, J.A.C. and P.K. Hormann (1981) Separation of yttrium and rare earth elements from geological materials. Anal. Chim. Acta 124, 421–425.

    Article  Google Scholar 

  • Broekaert, J.A.C., F. Leis and K. Laqua (1979a) Application of an inductively coupled plasma to the emission spectroscopic determination of rare earths in mineralogical samples. Spectrochim. Acta 34B, 73–84.

    Article  Google Scholar 

  • Broekaert, J.A.C., F. Leis and K. Laqua (19796) Some aspects of matrix effects caused by sodium tetraborate in the analysis of rare earth minerals with the aid of inductively coupled plasma atomic emission spectroscopy. Spectrochim. Acta 34B, 167–175.

    Google Scholar 

  • Browner, R.F. and A.W. Boom (1984) Sample introduction tech- niques for atomic spectroscopy. Anal. Chem. 56, 875A - 888A.

    Google Scholar 

  • Cantillo, A.Y.. S.A. Sinex and G.R. Helz (1984) Elemental analysis of estuarine sediments by lithium metaborate fusion and direct current plasma emission spectrometry. Anal. Chem. 56, 33–37.

    Article  Google Scholar 

  • Cantle, J. and P. Goddard (1983) Inductively coupled plasma source mass spectrometry for elemental and isotopic analysis. Int. Lab-mate 8, issue 5.

    Google Scholar 

  • Church, S.E. (1981) Multi-element analysis of fifty-four geochemical reference samples using inductively coupled plasma-atomic emission spectrometry. Geostand. Newslett. 5, 133–160.

    Article  Google Scholar 

  • Crock, J.G. and F.E. Lichte (1982). Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry. Anal. Chem. 54, 1329 1332

    Google Scholar 

  • Crock, J.G., F.E. Lichte and P.H. Briggs (1983) Determination of elements in National Bureau of Standards geological reference materials SRM 278 obsidian and SRM 688 basalt by inductively coupled argon plasma-atomic emission spectrometry. Geostand. Newslett. 7, 335–340.

    Article  Google Scholar 

  • Crock, J.G., F.E. Lichte and T.R. Wildeman (1984) The group separation of the rare earth elements and yttrium from geologic materials by cation exchange chromatography. Chem. Geol. 45, 149–163.

    Article  Google Scholar 

  • Date, A.R. and A.L. Gray (1981) Plasma source mass spectrometry using an inductively coupled plasma and a high resolution quadrupole mass filter. Analyst (London) 106, 1255–1267.

    Article  Google Scholar 

  • Date, A.R. and A.L. Gray (1983) Progress in plasma source mass spectrometry. Spectrochim. Acta 38B, 29–37.

    Article  Google Scholar 

  • Decker, R.J. (1980) Some analytical characteristics of a three-electrode dc argon plasma source for optical emission spectrometry. Spectrochim. Acta 35B 19–31.

    Google Scholar 

  • Deming, S.N. and S.L. Morgan (1983) Teaching the fundamentals of experimental design. Anal. Chim. Acta 150, 183–198.

    Article  Google Scholar 

  • Deming, S.N. and L.R. Parker (1978) A review of simplex optimisation in analytical chemistry. CRC Crit. Rev. Anal. Chem., 187202.

    Google Scholar 

  • Ebdon, L. (1982) An Introduction to Atomic Absorption Spectroscopy. Heyden, London.

    Google Scholar 

  • Ebdon, L., M.R. Cave and D.J. Mowthorpe (1980a) Simplex optimisation of inductively coupled plasmas. Anal. Chim. Acta 115, 179–187.

    Article  Google Scholar 

  • Ebdon, L., D.J. Mowthorpe and M.R. Cave (19806) A versatile torch for inductively coupled plasma spectrometry. Anal. Chim. Acta 115, 171–178.

    Google Scholar 

  • Fassel, V.A. (1977) Current and potential applications of inductively coupled plasma (ICP)-atomic emission spectroscopy (AES) in the exploration, mining and processing of materials. Pure Appl. Chem. 49, 1533–1545.

    Article  Google Scholar 

  • Fassel, V.A. (1978) Quantitative elemental analyses by plasma emission spectroscopy. Science 202, 183–191.

    Article  Google Scholar 

  • Fernando, L.A. (1982) Figures of merit for an ICP-echelle spectrometer system. Spectrochim. Acta 37B, 859–868.

    Article  Google Scholar 

  • Floyd, M.A., V.A. Fassel and A.P. D’Silva (1980a) Computer-controlled scanning monochromator for the determination of 50 elements in geochemical and environmental samples by inductively coupled plasma-atomic emission spectrometry. Anal Chem. 52, 2168–2173.

    Article  Google Scholar 

  • Floyd, M.A., V.A. Fassel, R.K. Winge, J.M. Katzenberger and A.P. D’Silva (19806) Inductively coupled plasma-atomic emission spectroscopy: a computer controlled scanning monochromator system for the rapid sequential determination of the elements. Anal. Chem. 52, 431–438.

    Google Scholar 

  • Forster, A.R., T.A. Anderson and M.L. Parsons (1982) ICP spectra: I. Background emission. Appl. Spectrosc. 36, 499–504.

    Google Scholar 

  • Fry, R.C. and M.B. Denton (1977) High solids sample introduction for flame atomic-absorption analysis. Anal. Chem. 49, 1413–1417.

    Article  Google Scholar 

  • Fry, R.C. and M.B. Denton (1979) Characteristics of a high solids nebuliser for flame atomic absorption spectrometry. Appl. Spectrosc. 33, 393–399.

    Article  Google Scholar 

  • Garbarino, J.R. and H.E. Taylor (1980) A Babington-type nebuliser for use in the analysis of natural water samples by inductively coupled plasma spectrometry. Appl. Spectrosc. 34, 584–590.

    Article  Google Scholar 

  • Greenfield, S. and D.T. Burns (1980) Comparison of argon-cooled and nitrogen-cooled plasma torches under optimised conditions based on the concept of intrinsic merit. Anal. Chim. Acta 113, 205–220.

    Article  Google Scholar 

  • Greenfield, S., I.LI. Jones and C.T. Berry (1964) High pressure plasmas as spectroscopic emission sources. Analyst (London) 89, 713–720.

    Article  Google Scholar 

  • Greenfield, S., ELI. Jones, H.McD. McGeachin and P.B. Smith (1975a) Automatic multi-sample simultaneous multi-element analysis with a H.F. plasma torch and direct reading spectrometer. Anal. Chim. Acta 74, 225–245.

    Google Scholar 

  • Greenfield, S., H.McD. McGeachin and P.B. Smith (19756) Plasma emission sources in analytical spectroscopy-1. Talanta 22, 1–15.

    Google Scholar 

  • Harrison, G.R. (1969) MIT Wavelength Tables. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Hieftje, G.M. (1983) Mini, micro and high efficiency torches for the ICP—toys or tools. Spectrochim. Acta 38B, 1465–1481.

    Article  Google Scholar 

  • Human, H.G.C. and R.H. Scott (1976) The shapes of spectral lines emitted by an inductively coupled plasma. Spectrochim. Acta 31B, 459–473.

    Article  Google Scholar 

  • Jeffery, P.G. (1975) Chemical Methods of Rock Analysis. Pergamon, Oxford.

    Google Scholar 

  • Johnson and Matthey Chemicals (1978) JMC Products for the Analyst. Johnson and Matthey Chemicals Ltd., Royston, Herts. Kalnicky, D.J., R.N. Kniseley and V.A. Fassel (1975) Inductively coupled plasma-optical emission spectroscopy. Excitation temperatures experienced by analyte species. Spectrochim. Acta 30B, 511–525.

    Google Scholar 

  • Kniseley, R.N., H. Amenson, C.C. Butler and V.A. Fassel (1974) Improved pneumatic nebuliser for use at low nebulising gas-flows. Appt. Spectrosc. 28, 285–286.

    Article  Google Scholar 

  • Koirtyohann, S.R., J.S. Jones, C.P. Jester and D.A. Yates (1981) Use of spatial emission profiles and a nomenclature system as aids in interpreting matrix effects in the low-power argon inductively coupled plasma. Spectrochim. Acta 36B, 49–59.

    Article  Google Scholar 

  • Langmyhr, F.J. and P.E. Paus (1968) The analysis of inorganic siliceous materials by atomic absorption spectrophotometry and the hydrofluoric acid decomposition technique. Part I: the analysis of silicate rocks. Anal. Chim. Acta 43, 397–408.

    Article  Google Scholar 

  • Larson, G.F. and V.A. Fassel (1979) Line broadening and radiative recombination background interferences in inductively coupled plasma-atomic emission spectroscopy. Appt. Spectrosc. 33, 592599.

    Google Scholar 

  • Leary, J.J., A.E. Brookes, A.F. Dorrzapf and D.W. Golightly (1982) An objective function for optimisation techniques in simultaneous multi-element analysis by inductively coupled plasma spectrometry. Appt. Spectrosc. 36, 37–40.

    Article  Google Scholar 

  • McKinnon, P.J. and K.C. Giess (1981) A clog-free nebuliser for use in inductively coupled plasma-atomic emission spectroscopy. In: R.M. Barnes (ed.), Developments in Atomic Plasma Spectrochemical Analysis. Heyden, London.

    Google Scholar 

  • McLaren, J.W., S.S. Berman, V.J. Boyko and D.S. Russell (1981) Simultaneous determination of major, minor and trace elements in marine sediments by inductively coupled plasma atomic emission spectrometry. Anal. Chem. 53, 1802–1806.

    Article  Google Scholar 

  • McQuaker, N.R., P.D. Kluckner and G.N. Chang (1979) Calibration of an inductively coupled plasma-atomic emission spectrometer for the analysis of environmental materials. Anal. Chem. 51, 888–895.

    Google Scholar 

  • Meggers, W.F., C.H. Corliss and B.F. Scribner (1975) Tables of Spectral Line Intensities. Part I, arranged by element; Part II, arranged by wavelength. NBS Monograph 145, US Government Printing Off., Washington DC.

    Google Scholar 

  • Meinhard, J.E. (1976) ICP Inf. Newslett. 2, 163.

    Google Scholar 

  • Mermet, J.M. (1975) Sur les mécanismes d’excitation des éléments introduits dans un plasma HF d’argon. C. R. Acad. Sci. Paris 281, 273–275.

    Google Scholar 

  • Michaud, E. and J.M. Mermet (1982) Iron spectrum in the 200300 nm range emitted by an inductively coupled argon plasma. Spectrochim. Acta 37B, 145–164.

    Article  Google Scholar 

  • Montaser, A., G.R. Huse, R.A. Wax, S.-K. Chan, D.W. Golightly, J.S. Kane and A.F. Dorrzapf (1984) Analytical performance of a low-gas-flow-torch optimised for inductively coupled plasma atomic emission spectrometry. Anal. Chem. 56, 283–288.

    Article  Google Scholar 

  • Neider, J.A. and R. Mead (1965) A simplex method for function minimisation. Comput. J. 7, 308.

    Article  Google Scholar 

  • Nygaard, D.D., D.S. Chase and D.A. Leightly (undated) Choice of observation height for determination of alkali metals by ICP emission spectrometry. Instrumentation Laboratory Applications Note AID 165.

    Google Scholar 

  • Olson, K.W., W.J. Haas and V.A. Fassel (1977) Multi-element detection limits and sample nebulisation efficiencies of an improved ultrasonic nebuliser and a conventional pneumatic nebuliser in inductively coupled plasma-atomic emission spectrometry.. 4nal. Chem. 49, 632–637.

    Google Scholar 

  • Parsons, M.L., A.R. Forster and D. Anderson (1980) An Atlas of Spectral Interferences in ICP Spectroscopy. Plenum, New York. Ramsey, M.H., M. Thompson and B.J. Coles (1983) Modified con-centric glass nebuliser for reduction of memory effects in inductively coupled plasma spectrometry. Anal. Chem. 54, 1626–1629. Reed, T.B. (1961) Induction-coupled plasma torch. J. Appl. Phys. 32, 821–824.

    Google Scholar 

  • Reed, T.B. (1962) Internat. Sci. Technol. June, 42.

    Google Scholar 

  • Reed, T.B. (1963) Heat transfer intensity from induction plasma flames and oxy-hydrogen flames. J. App!. Phys. 34, 2266–2269. Ripson, P.A.M., L. de Galan and J.W. de Ruiter (1982) An induc- tively coupled plasma using 1 L/min of argon. Spectrochim. Acta 37B, 733–738.

    Google Scholar 

  • Robin, J.P. (1982) ICP-AES at the beginning of the eighties. Prog. Analyt. Atom. Spectrosc. 5, 79–110.

    Google Scholar 

  • Schramel, P. (1983) Consideration of inductively coupled plasma spectroscopy for trace element analysis in the bio-medical and environmental fields. Spectrochim. Acta 38B, 199–206.

    Article  Google Scholar 

  • Schutyser, P. and Jansenns, E. (1979) Evaluation of spray chambers for use in inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta 34B, 443 ‘149.

    Google Scholar 

  • Scott, R.H., V.A. Fassel, R.N. Kniseley and D.E. Nixon (1974) Inductively coupled plasma-optical emission analytical spectr,,metry—a compact facility for trace analysis of solutions. Anal. Chem. 46, 75–80.

    Article  Google Scholar 

  • Sp, ndley, W., G.R. Hext and F.R. Himsworth (1962) Technometrics 4, 441.

    Article  Google Scholar 

  • Suddenorf, R.F. and K.W. Boyer (1978) Nebuliser for analysis of high salt content samples with inductively coupled plasma emission spectrometry. Anal. Chem. 50, 1769–1771.

    Article  Google Scholar 

  • Suddenorf, R.F. and K.W. Boyen (1981) New approaches to sample introduction with the inductively coupled plasma. In: R.M. Barnes (ed.), Developments in Atomic Plasma Spectrochemical Analysis. Heyden, London, 278–286.

    Google Scholar 

  • Terblanche, S.P., K. Visser and P.B. Zeeman (1981) The modified sequential simplex method of optimisation as applied to an inductively coupled plasma source. Spectrochim. Acta 36B, 293–297.

    Article  Google Scholar 

  • Thompson, M. and J.N. Walsh (1983) A Handbook of Inductively Coupled Plasma Spectrometry. Blackie, Glasgow and London.

    Google Scholar 

  • Valente, S.E. and W.B. Schrenk (1970) Design and some emission characteristics of an economical dc-arc plasma jet excitation source for solution analysis. Appl. Spectrosc. 24, 197.

    Article  Google Scholar 

  • Van Loon, J.C. (1980) Analytical Atomic Absorption Spectroscopy. Academic Press, New York.

    Google Scholar 

  • Walsh, J.N. (1980) The simultaneous determination of the major, minor and trace constituents of silicate rocks using inductively coupled plasma spectrometry. Spectrochim. Acta 35B, 107-I 11.

    Google Scholar 

  • Walsh, J.N. (1982) Whole rock analysis by inductively coupled plasma spectrometry. In: Sampling and Analysis for the Mining Industry, Inst. Mining Metall., London, 79–91.

    Google Scholar 

  • Walsh, J.N., F. Buckley and J. Barker (1981) The simultaneous determination of the rare earth elements in rocks using inductively coupled plasma source spectrometry. Chem. Geol. 33, 141–153.

    Article  Google Scholar 

  • Walsh, J.N. and R.A. Howie (1980) An evaluation of the performance of an inductively coupled plasma source spectrometer for the determination of the major and trace constituents of silicate rocks and minerals. Mineral. Mag. (London) 43, 967–984.

    Article  Google Scholar 

  • Walters, N.M., A. Strasheim and A.R. Oakes (1983) The influence of dispersion and stray light on the analysis of geological samples by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Spectrochim. Acta 38B, 959–965.

    Article  Google Scholar 

  • Watters, R.L. (1983) Practical limits of precision in inductively coupled plasma spectrometry. Am. Lab., March, 16–25.

    Google Scholar 

  • Wendt, R.H. and V.A. Fassel (1965) Induction-coupled plasma spectrometric excitation source. Anal. Chem. 37, 920–922.

    Article  Google Scholar 

  • Winge, R.K., V.A. Fassel, V.J. Peterson and M.A. Floyd (1982) ICP emission spectrometry—on the selection of analytical lines, line coincidence tables and wavelength tables. Appl. Spectrosc. 36, 210–221.

    Article  Google Scholar 

  • Winge, R.K., V.A. Fassel, V.J. Peterson and M.A. Floyd (1984) Inductively Coupled Plasma-Atomic Emission Spectroscopy. An Atlas of Spectral Information. Elsevier, Amsterdam.

    Google Scholar 

  • Winge, R.K., V.J. Peterson and V.A. Fassel (1979) Inductively coupled plasma-atomic emission spectroscopy: prominent lines. App!. Spectrosc. 33, 206–219.

    Article  Google Scholar 

  • Yarbro, L.A. and S.N. Deming (1974) Selection and pre-processing of factors for simplex optimisation. Anal. Chim. Acta 73, 391398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potts, P.J. (1987). Inductively coupled plasma-atomic emission spectrometry. In: A Handbook of Silicate Rock Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3988-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3988-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3990-6

  • Online ISBN: 978-94-015-3988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics