Skip to main content

Mass spectrometry: principles and instrumentation

  • Chapter
Book cover A Handbook of Silicate Rock Analysis

Abstract

During the early 1970s, neutron activation analysis in the determination of rare-earth elements perhaps had the most significant influence on the advancement of geochemical thinking, but there can be little doubt that a decade later this accolade was firmly transferred to mass spectrometry. The reason for this is that mass spectrometry is the only technique capable of inferring the geochemical history of samples right back to the age of accretion of the Earth. This arises not only from the possibility of interpreting mass spectrometry isochron data in terms of the age of a sample, but also from the very precise isotope measurements of, for example, inert gases contained in some meteoritic samples which can give data on the nucleo-synthetic processes pertaining to the origin of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, E.C., R.S. Lewis, J.H. Reynolds and M.C. Michel (1971) Plutonium-244: confirmation as an extinct radioactivity. Science 172, 837–840.

    Article  Google Scholar 

  • Arden, W. and N.H. Gale (1974) New electrochemical technique for the separation of lead at trace levels from natural silicates. Anal. Chem. 46, 2–9.

    Google Scholar 

  • Benninghoven, A., C. Plog and N. Treitz (1974) Measurements of relative secondary ion yields from oxidized tungsten (100) under bombardment by ions with different masses and energies. Int. J. Mass Spectrom. Ion Phys. 13, 415–424.

    Google Scholar 

  • Beynon, J.H. and A.G. Brenton (1982) An Introduction to Mass Spectrometry University of Wales Press, Cardiff.

    Google Scholar 

  • Birck, J.L. and C.J. Allegre (1973) ‘7I6.6247Sr systematics of Muntsche Tundra mafic pluton. Earth Planet. Sci. Lett. 20, 266–274.

    Google Scholar 

  • Campbell, J.A. (1969) Chemical Systems—Energetics, Dynamics, Structure. W.H. Freeman, San Francisco.

    Google Scholar 

  • Cross, W.G. (1951) Two-directional focussing of charged particles with a sector-shaped uniform magnetic field. Rev. Sci. Instrum. 22,717–722.

    Google Scholar 

  • Dalrymple, G.B. and M.A. Lanphere (1969) Potassium-Argon Dating: Principles, Techniques and Applications to Geochronology. W.H. Freeman, San Francisco.

    Google Scholar 

  • Dalrymple, G.B. and M.A. Lanphere (1971)“0Ar/39Ar technique of K/Ar dating: a comparison with the conventional technique. Earth Planet. Sci. Lett. 12, 300–308.

    Google Scholar 

  • Daly, N.R. (1960) Scintillation type mass spectrometer ion detector. Rev. Sci. Instrum. 31, 264–267.

    Google Scholar 

  • Dawson, P.H. (ed.) (1976) Quadruple Mass Spectrometry and Its Applications. Elsevier, Amsterdam.

    Google Scholar 

  • DePaolo, D.J. and G.J. Wasserburg (1976) Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3, 249–252.

    Article  Google Scholar 

  • Ewing, G.W. (1975) Instrumental Methods of Chemical Analysis(4th edn.). McGraw-Hill, New York.

    Google Scholar 

  • Faure, G. (1977) Principles of Isotope Geology. John Wiley and Sons, New York.

    Google Scholar 

  • Gale, N.H., J.W. Arden and R. Hutchinson (1975) The chronology of the Nakhla achondritic meteorite. Earth Planet. Sci. Lett. 26, 195–206.

    Google Scholar 

  • Godwin, H. (1962) Half life of radiocarbon. Nature (London) 195, 984.

    Google Scholar 

  • Hawkesworth, C.J. and P.W.C. van Calsteren (1983) Radiogenic isotopes—some geological applications. In: P. Henderson (ed.), Rare Earth Element Geochemistry (Developments in geochemistry, 2). Elsevier, Amsterdam, 375–421.

    Google Scholar 

  • Kaiser, T., D. Piepgras and G.J. Wasserburg (1981) A search for evidence of a fissionable nuclide in iron meteorites and implications on heat sources in planetary cores. Earth Planet. Sci. Lett. 52, 239–250.

    Google Scholar 

  • Kelly, W.R., F. Tera and G.J. Wasserburg (1978) Isotopic determination of silver in picomole quantities by surface ionisation mass spectrometry. Anal. Chem. 50, 1279–1286.

    Google Scholar 

  • Korkisch, J. and G. Arrhenius (1964) Separation of uranium, thorium and the rare earth elements by anion exchange. Anal. Chem. 36, 850–854.

    Google Scholar 

  • Krogh, T.E. (1973) A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 485–494.

    Google Scholar 

  • Kuroda, P.K. (1960) Nuclear fission in the early history of the earth. Nature (London) 187, 36–38.

    Article  Google Scholar 

  • Lichtman, D. (1964) Res. Dec. 15, 52.

    Google Scholar 

  • Litzow, M.R. and T.R. Spalding (1973) Mass Spectrometry of Inorganic and Organometallic Compounds. Elsevier, Amsterdam. Luck, J.M. and C.J. Allegre (1982) The study of molybdenites through the ’“’Re- I ’Os chronometer. Earth Planet. Sci. Lett. 61, 291–296.

    Google Scholar 

  • Luck, J.M. and C.J. Allegre (1983)I’Re-’Os systematics in meteorites and cosmochemical consequences. Nature (London) 302 130132.

    Google Scholar 

  • Luck, J.M., J.L. Birck and C.J. Allegre (1980) “712e-’”’Os systematics in meteorites: early chronology of the solar system and the age of the galaxy. Nature (London) 283, 256–259.

    Google Scholar 

  • Lugmair, G.W. and K. Marti (1978) Lunar initial “ 3 1\Id/’Nd: differential evolution of lunar crust and mantle. Earth Planet. Sci. Lett. 39, 349–357.

    Google Scholar 

  • Lugmair, G.W., N.B. Scheinin and K. Marti (1975) Search for extinct I“Sm. 1: the isotopic abundance of ’”,Nd in the Juvinas meteorite. Earth Planet. Sci. Lett. 27, 79–84.

    Article  Google Scholar 

  • Manhes, G., J.F. Minster and C.J. Allegre (1978) Comparative

    Google Scholar 

  • uranium-thorium-lead and rubidium-strontium study of the Saint Severin amphoterite: consequences for early solar system chronology. Earth Planet. Sci. Lett. 39 14–24.

    Google Scholar 

  • McCulloch, M.J., J.R. de Laeter and K.J.R. Rosman (1976) The isotopic composition and elemental abundance of lutetium in meteorites and terrestrial samples and the 16Lu cosmo- chronometer. Earth Planet. Sci. Lett. 28, 308–322.

    Article  Google Scholar 

  • McDougall, I. (1974) The 40Ar/39Ar method of K-Ar age determination of rocks using HIFAIR reactor. Atom. Energy Australia 17, 3–12.

    Google Scholar 

  • McGlasham, M.L. (1971) Physico-Chemical Quantities and Units ( 2nd edn. ). Royal Institute of Chemistry, London.

    Google Scholar 

  • Moore, W.J. (1966) Physical Chemistry ( 4th edn. ). Longman, London.

    Google Scholar 

  • Moore, L.J., J.R. Moody, I.L. Barnes, J.W. Gramlich, T.J. Murphy, P.J. Paulsen and W.R. Shields (1973) Trace determination of rubidium and strontium in silicate glass standard reference materials. Anal. Chem. 45, 2384–2387.

    Article  Google Scholar 

  • O’Nions, R.K., S.R. Carter, N.M. Evensen and P.J. Hamilton (1979) Geochemical and cosmochemical applications of Nd isotope analysis. Ann. Rev. Earth Planet Sci. 7, 11–38.

    Article  Google Scholar 

  • O’Nions, R.K., P.J. Hamilton and N.M. Evensen (1977) Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth Planet. Sci. Lett. 34, 13–22.

    Article  Google Scholar 

  • Pankhurst, R.J. and R.K. O’Nions (1973) Determination of Rb, Sr and 87Sr/86Sr ratios of some standard rocks and evaluation of x-ray fluorescence spectrometry in Rb-Sr geochemistry. Chem. Geol. 12, 127–136.

    Article  Google Scholar 

  • Patchett, P.J. and M. Tatsumoto (1980a) Lu-Hf total-rock isochron for the eucrite meteorites. Nature (London) 288, 571–574. P.tchett, P.J. and M. Tatsumoto (1980b) A routine high precision method for Lu-Hf isotope geochemistry and chronology. Contrib. Mineral. Petrol. 75, 263–267.

    Google Scholar 

  • Paul, W., H.P. Reinhard and U. von Zahn (1958) The electric mass-filter as mass spectrometer and isotope separator. Z. Phys. 152, 143–182.

    Google Scholar 

  • Pecsok, R.L., L.D. Shields, T. Cairns and I.G. McWilliam (1976) Modern Methods of Chemical Analysis ( 2nd edn. ). John Wiley and Sons, New York.

    Google Scholar 

  • Ralph, E.K. (1971) Carbon-14 dating. In: H.N. Michael and E.K. Ralph (eds.), Dating Techniques for the Archaeologist. MIT Press, Cambridge, Mass., I - 48.

    Google Scholar 

  • Reynolds, J.H. (1960) Determination of the age of the elements. Phys. Rev. Lett. 4, 8–10.

    Article  Google Scholar 

  • Richard, P., N. Shimizu and C.J. Allegre (1976) 147Nd/144Nd, a natural tracer: an application to oceanic basalts. Earth Planet. Sci. Lett. 31, 269–278.

    Google Scholar 

  • Sanz, H.G. and G.J. Wasserburg (1969) Determination of an internal “Ró—”Sr isochron for the Olivenza chondrite. Earth Planet. Sci. Lett. 6, 335–345.

    Article  Google Scholar 

  • Skoog, D.A. and D.M. West (1980) Principles of Instrumental Analysis ( 2nd edn. ). Saunders College, Philadelphia/Holt-Saunders, Japan, Tokyo.

    Google Scholar 

  • Stacey, J.S. and J.D. Kramers (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221.

    Article  Google Scholar 

  • Steiger, R.H. and E. Jager (1977) Subcommission on geochronology: conventions on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362.

    Article  Google Scholar 

  • Sun, S.-S. (1980) Lead isotopic study of young volcanic rocks from mid-oceanic ridges, ocean islands and island arcs. Phil. Trans. Roy. Soc. Lond. A297, 409–445.

    Article  Google Scholar 

  • Tanaka, T. and A. Masuda (1982) The La-Ce geochronometer: a new dating method. Nature (London) 300, 515–518.

    Article  Google Scholar 

  • Tatsumoto, M., R.J. Knight and C.J. Allegre (1973) Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206. Science 180, 1279–1283.

    Article  Google Scholar 

  • Taylor, S.R. (1965) Geochemical analysis by spark source mass spectrography. Geochim. Cosmochim. Acta 29, 1243–1261.

    Article  Google Scholar 

  • Taylor, S.R. and M.P. Gorton (1977) Geochemical application of spark source mass spectrography—III. Element sensitivity, precision and accuracy. Geochim. Cosmochim. Acta 41, 1375 1380.

    Google Scholar 

  • Tera, F. and G.J. Wasserburg (1972a) U-Th-Pb systematics in Lunar highland samples from the Luna 20 and Apollo 16 missions. Earth Planet. Sci. Lett. 17, 36–51.

    Article  Google Scholar 

  • Tera, F. and G.J. Wasserburg (19726) U-Th-Pb analyses of soil from the Sea of Fertility. Earth Planet. Sci. Lett. 13, 457–466. Wasserburg, G.J., S.B. Jacobson, D.J. DePaolo, M.T. McCulloch and T. Wen (1981) Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta 45, 2311–2323.

    Google Scholar 

  • Weast, R.C. (editor-in-chief) (1973) Handbook of Chemistry and Physics ( 54th edn. ). Chemical Rubber Publishing Co., Cleveland, Ohio.

    Google Scholar 

  • White, F.A. (1968) Mass Spectrometry in Science and Technology. John Wiley and Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potts, P.J. (1987). Mass spectrometry: principles and instrumentation. In: A Handbook of Silicate Rock Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3988-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3988-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3990-6

  • Online ISBN: 978-94-015-3988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics