Skip to main content

Concepts in analytical chemistry

  • Chapter
A Handbook of Silicate Rock Analysis

Abstract

The analytical chemistry of silicate rocks and minerals takes in a diverse range of techniques employing a wide variety of physical phenomena. Although the concepts on which many of these techniques are based appear to have little in common, a degree of uniformity does embrace each in terms of the underlying analytical principles. Thus the desired goal is to measure a signal related to the concentration of an elemental constituent of a sample. This analyte signal invariably possesses a background component, the magnitude of which usually limits the lowest concentration that can be satisfactorily analysed (the detection limit). The precision with which the signal can be measured depends on a variety of factors, both fundamental and instrumental in origin. These could include counting statistical errors, signal to background ratios, instrumental noise, drift and sensitivity. All techniques suffer interference effects and, in some, account must be taken of blank and contamination levels. It is generally necessary to prove the accuracy of measurements by the comparative analysis of international rock reference materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbey, S. (1970) US Geological Survey standards a critical study of published analytical data. Can. Spectrosc. 15, 10–16.

    Google Scholar 

  • Abbey, S. (1972) `Standard samples’ of silicate rocks and minerals A review and compilation. Geol. Survey Canada, Paper 72–30.

    Google Scholar 

  • Abbey, S. (1975) Studies in `standard samples’ of silicate rocks and minerals. Part 4: 1974 edition of `usable’ values. Geol. Survey Canada, Paper 74–41.

    Google Scholar 

  • Abbey, S. (1977) Studies in `standard samples’ of silicate rocks and minerals. Part 5: 1977 edition of `usable’ values. Geol. Survey Canada, Paper 77–34.

    Google Scholar 

  • Abbey, S. (1982) An evaluation of USGS III. Geostand. Newslett. 6, 47–76.

    Article  Google Scholar 

  • Abbey, S. (1983) Studies in `standard samples’ of silicate rocks and minerals 1969–1982. Geol. Survey Canada, Paper 83–15.

    Google Scholar 

  • Abbey, S. and R.M. Rousseau (1985) Pragmatism vs. rigour: a debate on the resolution of disparate analytical data on four Canadian iron formation reference samples. Geostand. Newslett. 9, 1–16.

    Article  Google Scholar 

  • Ahrens, L.H. (1951) Spectrochemical analysis of some of the rarer elements in the granite and diabase samples. In: Fairburn and others (1951), q.v., 53–57.

    Google Scholar 

  • Ahrens, L.H. (1977) A story of two rocks. Geostand. Newslett. 1, 157–161.

    Article  Google Scholar 

  • American Chemical Society, Committee on Environmental Improvements (1980). Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal. Chem. 52, 2242–2249.

    Article  Google Scholar 

  • Andrews, D.F., P.J. Bickel, F.R. Hampel, P.J. Huber, W.H. Rogers and J.W. Turkey (1972) Robust Estimates of Location. Princeton University Press, Princeton.

    Google Scholar 

  • Boumans, P.W.J.M. (1978) A tutorial review of some elementary concepts in the statistical evaluation of trace element measurements. Spectrochim. Acta 33B, 625–634.

    Article  Google Scholar 

  • Chayes, F. (1951) Modal analyses of the granite and diabase test rocks. In: Fairburn and others (1951), q.v., 59–68.

    Google Scholar 

  • Chayes, F. (1969) A last look at G-1 and W-1. Carnegie Inst. Yearbk. 67, 239–241.

    Google Scholar 

  • Chayes, F. (1970) Another last look at G1W1 Int. Assoc. Math. Geol. J. 2, 207–209.

    Article  Google Scholar 

  • Christie, O.H.J. and K.N. Alfsen (1977) Data transformation as a means to obtain reliable consensus values for reference materials. Geostand. Newslett. 1, 47–49.

    Article  Google Scholar 

  • Columbo, A. (1980) Another approach to the mode of a skewed set of data: the plot method. Geostand. Newslett. 4, 239–242.

    Article  Google Scholar 

  • Coppola, P.P. and R.C.Hughes (1952) Polyethylene still for preparation of pure hydrofluoric acid. Anal. Chem. 24, 768.

    Article  Google Scholar 

  • Cumming, G.L., J.S. Rollett, F.J.C. Rossotti and R.J. Whewell (1972) Statistical methods for the computation of stability constants. Part I: straight-line fitting of points with correlation errors. J. Chem. Soc. (Dalton) 2652–2658.

    Google Scholar 

  • Curry, L.A. (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal. Chem. 40, 586–593.

    Article  Google Scholar 

  • Dabeka, R.W., A. Mykytiuk, S.S. Berman and D.S. Russell (1976) Polypropylene for the sub-boiling distillation and storage of high-purity acids and water. Anal. Chem. 48, 1203–1207.

    Article  Google Scholar 

  • Davis, J.C. (1973) Statistics and Data Analysis in Geology. John Wiley and Sons, New York.

    Google Scholar 

  • Delaey, L. and O. Arkens (1981) The acronyms used in the world of spectroscopy, microscopy and diffractometry–I: compilation and classification. Spectrochim. Acta 36B, 351–360.

    Article  Google Scholar 

  • Dixon, W.J. (1953) Processing data for outliers. Biometrics 9, 7489.

    Article  Google Scholar 

  • Dybczynski, R. (1980) Comparison of the effectiveness of various procedures for rejection of outlying results and assigning consensus values in interlaboratory programmes involving determination of trace elements or radionuclides. Anal. Chim. Acta. 117, 53–70.

    Article  Google Scholar 

  • Dybczynski, R., A. Tugsavul and O. Suschny (1979) Soil-5, a new

    Google Scholar 

  • IAEA certified reference material for trace element determinations. Geostand. Newslett. 3, 61–87.

    Google Scholar 

  • Edelman, N. (1962) Mathematics and geology. Geologiska Foren. Stockholm Forhand. 84, 343–350.

    Article  Google Scholar 

  • Ellis, P.J., I. Copelowitz and T.W. Steele (1977) Estimation of the mode by the dominant cluster method. Geostand. Newslett. 1, 123–130.

    Article  Google Scholar 

  • Ellis, P.J., J.H. Venter and T.W. Steele (1983) Estimation of material variation in powdered materials. Geostand. Newslett. 7, 261–272.

    Article  Google Scholar 

  • Fairburn, H.W. (1951) A cooperative investigation of precision and accuracy in chemical, spectrochemical and model analysis of silicate rocks. US Geol. Survey Bull. 980.

    Google Scholar 

  • Ferguson, T.S. (1961) In: J. Neyman (ed.) Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, 253–287.

    Google Scholar 

  • Filby, R.H., S. Nguyen, C.A. Grimm, G.R. Markowski, V. Ekambaram, T. Tanaka and L. Grossmann (1985) Evaluation of geochemical standard reference materials for microanalysis. Anal. Chem. 57, 551–555.

    Article  Google Scholar 

  • Flanagan, F.J. (1967) US Geological Survey silicate rock standards. Geochim. Cosmochim. Acta 31, 289–308.

    Article  Google Scholar 

  • Flanagan, F.J. (1969) US Geological Survey standards II. First compilation of data for the new USGS rocks. Geochim. Cosmochim. Acta. 33, 81–120.

    Article  Google Scholar 

  • Flanagan, F.J. (1973) 1972 values for international geochemical reference samples. Geochim. Cosmochim. Acta 37, 1189–1200.

    Google Scholar 

  • Flanagan, F.J. (1976a) G-1 et W-1: Requiescat in pace! US Geol. Survey Prof. Paper 840, 189–192.

    Google Scholar 

  • Flanagan, F.J. (1976b) 1972 compilation of data on USGS standards. US Geol. Survey Prof. Paper 840, 131–183.

    Google Scholar 

  • Fleischer, M. (1965) Summary of new data on rock samples G-1 and W-1 1962–1965. Geochim. Cosmochim. Acta 29, 1263–1283.

    Article  Google Scholar 

  • Fleischer, M. and R.E. Stevens (1962) Summary of new data on rock samples G-1 and W-1. Geochim. Cosmochim. Acta 26, 525543.

    Google Scholar 

  • Gastwirth, J. (1966) On robust procedures. J. Am. Stat. Assoc. 61, 929–948.

    Article  Google Scholar 

  • Gladney, E.S. C.E. Burns and I. Roelandts (1983) 1982 compilation of elemental concentrations in eleven United States Geological Survey rock standards. Geostand. Newslett. 7, 3–226.

    Google Scholar 

  • Govindaraju, K. (1980) Report (1980) on three GIT-IWG rock reference samples: anorthosite from Greenland, AN-G; basalte d’Essey-la-Cote, BE-N; granite de Beauvoir, MA-N. Geostand. Newslett. 4, 49–138.

    Article  Google Scholar 

  • Govindaraju, K. (1984) 1984 compilation of working values and sample description for 170 international reference samples of mainly silicate rocks and minerals. Geostand. Newslett. Sp. Issue vol. 8.

    Google Scholar 

  • Govindaraju, K. and H. de la Roche (1977) Rapport (1966–1976) sur les elements en traces dans trois roches standardes géochimiques du CRPG: basalte BR et granites GA et GH. Geostand. Newslett. 1, 67–100.

    Article  Google Scholar 

  • Griffiths, J.C. (1974) Problems of sampling in geoscience, In: M.P. Jones (1974) q.v. 1–11.

    Google Scholar 

  • Grubb, F.E. (1950) Sample criteria for testing outlying observations. Ann. Math. Stat. 21, 27–58.

    Article  Google Scholar 

  • Grubb, F. E. (1969) Procedures for detecting outlying observations in samples. Technometrics 11, 1–21.

    Article  Google Scholar 

  • Gy, P.M. (1974) The sampling of broken ores: a review of principle and practice. In: M.P. Jones (1974) q.v.

    Google Scholar 

  • Haber, A. and R.P. Runyon General Statistics (3rd edn.). Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Hayslett, H.T. (1981) Statistics Made Simple. Heinemann, London. Heydorn, K. and E. Damsgaard (1982) Gains and losses of ultra-trace elements in polyethylene containers. Talanta 29, 1019–1024.

    Google Scholar 

  • Ingamells, C.O., J.C. Engels, and P. Switzer (1972) Effect of lab-oratory sampling error in geochemistry and geochronology. Proc. 24th Int. Geol. Congress, Section 10, 405–415.

    Google Scholar 

  • Ingamells, C.O. and N.H. Suhr (1963) Chemical and spectrochemical analysis of standard silicate samples. Geochim. Cosmochim. Acta 27, 897–910.

    Article  Google Scholar 

  • Jones, M.P. (ed.) (1974) Geological, Mining and Metallurgical Sampling. Inst. Mining Metallurgy, London.

    Google Scholar 

  • Jones, M.P. and C.H.J. Beaven (1974) Sampling of non-Gaussian

    Google Scholar 

  • mineralogical distributions. In: M.P. Jones (1974) q.r.

    Google Scholar 

  • Kaiser, H. (1978) Foundations for the critical discussion of ana- lytical methods. Spectrochim. Acta 33B, 551–576.

    Article  Google Scholar 

  • Kleeman, A.W. (1967) Sampling error in the chemical analysis of rocks. J. Geol. Soc. Aust. 14, 43–47.

    Article  Google Scholar 

  • Kuehner, E.C., R. Alvarez, P.J. Paulsen and T.J. Murphy (1972) Production and analysis of special high purity acids purified by sub-boiling distillation. Anal. Chem. 44, 2050–2056.

    Article  Google Scholar 

  • Lister, B. (1982) Evaluation of analytical data: a practical guide for geoanalysis. Geostand. Newslett. 6, 175–205.

    Article  Google Scholar 

  • Lister, B. (1984) A note on robust estimates. Geostand. Newslett. 8, 171–172.

    Article  Google Scholar 

  • Long, G.L. and J.D. Winefordner (1983) Limit of detection—a closer look at the IUPAC definition. Anal. Chem. 55, 712A–724A. Maas, R.P. and S.A. Dressing (1983) Purification of nitric acid at trace metal levels. Anal. Chem. 55, 808–809.

    Article  Google Scholar 

  • Mattinson, J.M. (1972) Preparation of hydrofluoric, hydrochloric and nitric acids at ultra-low lead levels. Anal. Chem. 44, 17151716.

    Google Scholar 

  • McGlashan, M.L. (1971) Physico-Chemical Quantities and Units. Royal Institute of Chemistry, London.

    Google Scholar 

  • Moody, J.R. (1982a) The sampling, handling and storage of materials for trace analysis. Phil. Trans. Roy. Soc. London A308 669–680.

    Google Scholar 

  • Moody, J.R. (1982b) NBS clean laboratories for trace element analysis. Anal. Chem. 54, 1358A - 1376A.

    Google Scholar 

  • Moody, J.R. and R.M. Lindstrom (1977) Selection and cleaning of plastic containers for storage of trace element samples. Anal. Chem. 49 2264–2267.

    Google Scholar 

  • Murphy, T.J. (1976) The role of the analytical blank in accurate trace analysis. Proc. 7th Materials Res. Symp., US Govt. Printing Office, Washington, DC, 509–539.

    Google Scholar 

  • Murphy, G.J. (1982) Some aspects of sampling in terms of mineral exploration and mine geology. In Sampling and Analysis for the Mining Industry, Inst. Min. Metall., London, 93–119.

    Google Scholar 

  • Nicholls, G.D. (1974) Geochemical sampling problems in the analytical laboratory. In: M.P. Jones (1974) q.v.

    Google Scholar 

  • Potts, P.J., O. Williams Thorpe and J.S. Watson (1981) Determination of the rare earth element abundances in 29 international rock standards by instrumental neutron activation analysis: a critical appraisal of calibration errors. Chem. Geol. 34, 331–352. Ratzlaff, K.L. (1979) Optimizing precision in standard addition measurement. Anal. Chem. 51, 232–235.

    Google Scholar 

  • Ridley, K.J., A. Turek and C. Riddle (1976) The variability of chemical analysis as a function of sample heterogeneity and the implications to the analysis of rock standards. Geochim. Cosmochim. Acta 40, 1375–1379.

    Article  Google Scholar 

  • Sankar Das, M. (1979) Geometric means as probable values for compiled data on geochemical reference samples. Geostand. Newslett. 3, 199–205.

    Article  Google Scholar 

  • Schlecht, W.G. and R.E. Stevens (1951) Results of chemical analysis of samples of granite and diabase. In: Fairburn and others (1951) q.v., 7–24.

    Google Scholar 

  • Skoog, D.A. and D.M. West (1982) Fundamentals of Analytical Chemistry ( 4th edn. ). Holt-Saunders International, Philadelphia.

    Google Scholar 

  • Steele, T.W., J. Levin and I. Copelowitz (1975) The preparation and certification of a reference sample of a precious-metal ore. Nat. Inst. Metall. Rept. ( South Africa) No. 1696.

    Google Scholar 

  • Stevens, R.E. and others (1960) Second report on a cooperative investigation of the composition of two silicate rocks. US Geol. Survey Bull. 1113.

    Google Scholar 

  • Thompson, M. (1982) Regression methods in the comparison of accuracy. Analyst (London) 107, 1169–1180.

    Article  Google Scholar 

  • Thompson, G. and D.C. Bankston (1970) Samplings contamination for grinding and sieving determined by emission spectrometry. Appl. Spectrosc. 24, 210–219.

    Article  Google Scholar 

  • Uriano, G.A. and C.C. Gravatt (1977) The role of reference materials and reference methods in chemical analysis. CRC Critical Reviews in Analytical Chemistry 6, 361–411.

    Google Scholar 

  • US Federal Standard No. 209b (1966) Clean room and work station requirements, controlled environments. Govt. Services Admin. Business Service Centre, Boston, Mass.

    Google Scholar 

  • Vistelius, A.B. (1970) Statistical model of silicate analysis and results of investigation of G-1 and W-1 samples. Mt. Assoc. Math. Geol. J. 2, I - 14.

    Google Scholar 

  • Vistelius, A.B. (1971) Some lessons of the G-I-W-1 investigation. Int. Assoc. Math. Geol. J. 3 323–326.

    Google Scholar 

  • Weast, R.C. (editor-in-chief) (1973) Handbook of Chemistry and

    Google Scholar 

  • Physics (54th edn.). The Chemical Rubber Co., Cleveland, Ohio. Wilson, A.D. (1964) The sampling of silicate rock powders for chemical analysis. Analyst (London) 89 18–30.

    Google Scholar 

  • York, D. (1966) Least squares fitting of a straight line. Can. J. Phys. 44, 1079–1086.

    Article  Google Scholar 

  • York, D. (1969) Least squares fitting of a straight line with correlated errors. Earth Planet, Sci. Lett. 5, 320–324.

    Google Scholar 

  • Zemany, P.D. (1978) Precision and accuracy. In: H.K. Herglotz and L.S. Birks, X-ray spectrometry,Marcel Dekker, New York, pp. 69–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potts, P.J. (1987). Concepts in analytical chemistry. In: A Handbook of Silicate Rock Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3988-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3988-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3990-6

  • Online ISBN: 978-94-015-3988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics