Hormonal Regulation of Sex Expression in Plants

Part of the Advances in Agricultural Biotechnology book series (AABI, volume 21)


Investigations of the problem of sex formation and transformation in plants are of great importance for selection and raising of crop yields of many plants, especially of those which separate male and female flowers. N. V. Vavilov (1932) wrote that studies of sex formation and its variations in plants are of decisive importance for the development of selection methods and the problem should be elucidated for all important cultural plants. Investigation of the sex expression problem as has D. Sabinin (1963) pointed out, is an important part in the general problem of physiological development of plant organisms.


Gibberellic Acid Adventitious Root Female Flower Female Plant Male Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abdel-Gaward H. A. and H. J, Ketellapper. 1969. Regulation of growth flowering and senescence of spinach plants. II. Effects of 2-chloroethylphosphonic acid (Etherel) and abscisic acid. Plant Physiol, 44: 15.Google Scholar
  2. Addicott F. T. and J. L. Lyon. 1969. Physiology of abscisic acid and related substances. Ann. Rev. Plant Physiol., 20: 139-164.Google Scholar
  3. Amitawa, B. and T. Satoru. 1970. Effect of gibberellin upon sex expression and internode length in gynoecious and monoecious cucumber. J. Jap. Soc. Hort. Sci., 39: 224–231.Google Scholar
  4. Atal C. K. 1959. Sex reversal in hemp by application of gibberellin. Curr., Sci. 28: 408–509.Google Scholar
  5. Atsmon D. 1968. The interaction of genetic, environmental and hormonal factors in stem elongation and flora development of cucumber plants. Ann. Bot., 32: 877–882.Google Scholar
  6. Atsmon D. and E. Galun. 1962. Physiology of sex in Cucumis sativus L. Leaf age patterns and sexual differentiation of floral buds. Ann. Bot. 26: 102–105.Google Scholar
  7. Atsmon D., A. Lang and E. N. Light. 1968. Contents and recovery of gibberellins in monoecious and gynoecious cucumber plants. Plant Physiol., 43: 806–110.PubMedGoogle Scholar
  8. Avery G. S., R. Burkholder and H. B. Creigton. 1937. Production and distribution of growth hormone in shoots of Aesculus and Malus and its probable role in stimulating cambium activity. Amer. J. Bot., 24: 54–58.Google Scholar
  9. Bigot M. C. 1968. Action d’adenines subatances dans la synthése des betacyanines dans la plantule d’Amaranthus caudatas L. Possibilité d’un test biologique de dosage des cytokinins. Cur. Acad. Sci. (Paris). D. 266: 349–351.Google Scholar
  10. Bonnet-Masimbert M. and J. P. Nitsch. 1969. Induction precoce de la floraison chez und plante ligneuse Rhus typhina L. Bull. Soc. Bot. France. 116: 404–408.Google Scholar
  11. Bonnet-Masimbert M. 1970. Artifical induction of male and female flowers on young seedlings of Cupressus arizonica (Creene) and Chamaecyparis lawsaniana (Parl.). Sexual reproduction of forest trees. Finland, Proc. Meet. Varparants. pp. 189.Google Scholar
  12. Bonnet-Masimbert M. 1971. Induction florale precose chez Cupressus arizonica et Chamaecyparis lawsaniana. Silvae genet., 20: 82–90.Google Scholar
  13. Borkowska B. and J. Borkowski. 1975. Endogenous cytokinin-like compounds and growth inhibitors in pistillate and staminate cucmber flowers (Cucumis sativus L.). Bull. Acad. Pol. Sci. Ser. Sci. Biol., 23: 291–294.Google Scholar
  14. Britikov E. A. 1975. Biological role of proline. Science. (Moscow). pp. 1–88.Google Scholar
  15. Burg S. P. 1962. The physiology of ethylene formation. Ann. Rev, Plant Physiol., 13: 165–302.Google Scholar
  16. Butenko R. G. 1964. Culture of isolated tissue and physiology of plant morphogenesis. Science. (Moscow). pp. 1–272Google Scholar
  17. Butnizky I. M. and G. Kh. Molotkovsky. 1968. Effect of the photoperiod on the growth of the over-and underground organs in hemp plants at different stages and on the content of protein in them. Ukr. Bot. Journal., 25: 22–27.Google Scholar
  18. Carr D. J. and W. J, Burrows. 1966. Evidence of the presence in xylem sap substances with kinetin-like activity. Life Sci., 5: 2061–2077.Google Scholar
  19. Correns C. 1906. Die Vererbung der Geschlechtsformen bei dene gynodiozischen Pflanzen. Ber. Dtsch. Bot. Ges., 24: 459–474.Google Scholar
  20. Correns C. 1928a. Uber nichtmendelnde vererbung. Ztsch. indukt. Abstammungs-und Vererbungslehre, Suppl. pp. 131–168.Google Scholar
  21. Correns C. 1928b. Bestimmung, vererbung und Verteilung desGoogle Scholar
  22. Geschlechtes bei den hoheren Pflanzen Hdb. Vererbungswiss. B: Borntraeger pp. 31.Google Scholar
  23. Culafic Lj., and M. Neskovic. 1974. Indole auxins in spinach plants grown in long and short days. Biol. Plant Acd. Sci., Bohemosl., 16: 359–365.Google Scholar
  24. Chailakhyan M. Kh, 1970. Hormonal regulation of flowering in plants of different photoperiodic groups. In: Plant Growth Substances, Proceedings. D. J. Carr (ed.). 1972. Springer Verlag, Berlin. pp. 745–752.Google Scholar
  25. Chailakhyan M. Kh. 1971. Hormonal regulation of flowering in plants of different photoperiodic groups. Soy. Plant Physiol., 18: 289–295.Google Scholar
  26. Chailakhyan M. Kh. 1975. Autonomous and induced mechanisms of flowering regulation in plants. Soy. Plant Physiol., 22: 1111–1125.Google Scholar
  27. Chailakhyan M. Kh. and V. N. Khryanin. 1977. The influence of growth regulators absorbed by the root on sex expression in hemp plants. (In Russian). Dokl. Akad. Nauk SSSR.. 236: 268–271. Planta., 138: 181–187.Google Scholar
  28. Chailakhyan M. Kh. and V. N. Khryanin. 1978. Effect of growth regulators and the role of roots in sex expression in spinach plants. Planta., 142: 207–210.Google Scholar
  29. Chailakhyan M. Kh. and V. N. Khryanin. 1979. The role of leaves in sex expression in hemp and spinach. Planta., 144: 205–207.Google Scholar
  30. Chailakhyan M. Kh. and V. N. Khryanin. 1980. Hormonal regulation of sex expression in plants. Soy. Bot. Joirnal., 65: 153–171.Google Scholar
  31. Chailakhyan M. Kh. and V. N. Khryanin. 1980. Hormonal regulation of sex expression in culture of isolated hemp germs. Naturwissenschaften 67: 94–95.Google Scholar
  32. Chrominski A., and J. Kopcewicz. 1972. Auxins and gibberellins in 2-chloroethyphosphonic acid-induced femaleness of Cucurbita pepo. L. Z. Pflanzenphysiol. 68: 184–189.Google Scholar
  33. Chung Pei Hsia and Chung Hueii Kao. 1978. The importance of roots in regulating the senescence of Soybean primary leaves. Physiol. Plant., 43: 385–389.Google Scholar
  34. Dobrunov L. G. 1935. The peculiarities of mineral nutrition in hemp plants. Selected works of the All- Union Research Institute of hemp plants. ( In Russian ). Kiev, 8: 85–125.Google Scholar
  35. Dressler O. 1973. Erfahrungen bei der Vermethrung und Züchtung monözicher Spinatsoprten (Spinacia oleracea). Ztschr. Pflanzenzuht. 70: 108–128.Google Scholar
  36. Dunberg A. 1972. Effect of growth retardants on Norway spruce (Picea abies). Physiol. Plant., 28: 358–360.Google Scholar
  37. Dunberg A. 1973. Gibberellin-like substances from Norway spruce (Picea abies). Physiol. Plant., 28: 358–360.Google Scholar
  38. Dunberg O. 1974. Occurence of gibberellin-like substances in Norway spruce (Picea abies L. Karst) and their possible relation to growth and flowering. Stud. Forest. Suec., 111: 5–62.Google Scholar
  39. Dzaparidze L. I. 1963. Sex expression in plants. (In Russian). AN Cruz. SSR. Tbilisi. pp 1–307.Google Scholar
  40. Dzaparidze L. I. 1965. Sex expression in plants. (In Russian) Metzneireba. Tbilisi. pp 10–302. Engl. trans]. 1968. Jerusalem: Israeli Program Scient. Transi. 1963 /65.Google Scholar
  41. Engelbrecht L. 1973. Differences in the development of male and female hemp plants in relation to hormonal regulation. Pr. Inst. sadown Skiern. E, 3: 389–397.Google Scholar
  42. Frankel R. and E. Galun. 1977. Pollination mechanisms. Reproduction and plant breeding. B. etc.: Spring.-Ver]. Berlin-Heidelber-N.-Y. pp 1–135.Google Scholar
  43. Fuchs Y. and M. Lieberman. 1968. Effects of kinetin, IAA and gibberellic acid on ethylene production and their interactions in growth of seedlings. Plant Physiol., 43: 2029–2036.PubMedGoogle Scholar
  44. Galun E. 1959. The role of auxin in the expression of the cucumber. Physiol. Plant., 12: 48–61.Google Scholar
  45. Galun E. 1961. Study of inheritance of sex expression in the cucumber. The interaction of major genes with modifying genetic and non-genetic factors. Genetica., 32: 134–163.Google Scholar
  46. Grishko N. N. 1935. Problem of sex expression in hemp. Selected works of the All- Union Research Institute of hemp plants. (In Russian). Kiev. 8: 197–214.Google Scholar
  47. Heide O. M. 1978. Circadian rhythmicity in photoperiodic regulation of regeneration in Begonia leaves. Physiol. Plant.,43: 266–270.Google Scholar
  48. Heslop-Harrison J. 1956. Auxin and sexuality in Cannabis sativa. Physiol. Pant. 9: 588–597.Google Scholar
  49. Heslop-Harrison J. 1957. The experimental modification of sex expression of flowering plants. Biol. Rev., 32: 38–90.Google Scholar
  50. Heslop-Harrison J. 1963. Sex expression in flowering plant. Meristem and differentiation. Brookhaven Symp. Biol., 16: 109–125.Google Scholar
  51. Heslop-Harrison J. 1972. Sexuality in angiosperms. In: Plant Physiology. A treatise. Steward F. C. (ed.). Acad. Press, N. Y. 6 (C): 133–289.Google Scholar
  52. Hewett E. W. and P. F. Wareing. 1973. Cytokinins in Populus robusta: changes during chilling and bud burst. Physiol. Plant., 28: 393–399.Google Scholar
  53. Hoffman W. 1952. Die Vererbung der Geschlechtsformen des Hanfes (Cannabis sativa). II Zuchter., 22: 147–158.Google Scholar
  54. Ivonis I. J., L. V. Kylalina and E. V. Khokhlina. 1979. Gibberellin-like substances in needles of Picea excelsa clones differeing with plenty of microstrobilus. Soy. Plant Physiol.,26: 330–335.Google Scholar
  55. Jones D. F. 1939. Sex integrades in dioecious maize. Amer. J. Bot., 26: 412–415.Google Scholar
  56. Joyet-Lavergne Ph. 1931. La physico-chemie de la sexualite. Protoplasma, PP. 5.Google Scholar
  57. Kaushik M. P. and A. K. Bisaria. 1974. Combined effect of some growth regulators and day length on sex expression in muskmelon. Ind. J. Exp. Biol., 12: 111–112.Google Scholar
  58. Kolodny N. G. 1928. New data to the substantiation of the hormonalGoogle Scholar
  59. theory of tropisms. Journal of Russ. Bot. Society,13: 191. Khryanin V. N. 1969. Gibberellin and sex in hemp. (In Russian). Agrobiologia.,4: 753–758.Google Scholar
  60. Khryanin V. N. and E. L. Miyaeva. 1977. The influence of gibberellin on differentiation of the shoot apex of hemp (In Russian) Dokl. Acad. Nauk. SSSR., 234: 982–984.Google Scholar
  61. Khryanin V. N. and M. Kh. Chailakhyan. 1979. Biological activity of cytokinins and gibberellins in roots and leaves of diocious plants observing sex expression..Sor. Plant Physiol., 26: 1008–1015.Google Scholar
  62. Khryanin V. N. and M. Kh. Chailakyan 1980. Effect of the growth regulators in sex expression in maize plants absorbed by the root. Soy. Plant Physiol., 27: 424–428.Google Scholar
  63. Khryanin V. N., V. G. Kochankov and M. Kh. Chailakhyan. 1978. The effect of continuous darkness on growth flowering and sex expression in hemp plants. Soy. Plant Physiol., 25: 409–411.Google Scholar
  64. Köhler D. I964a. Geschlechtsbestimmung bei Blutenpflanzen. Ergeb. Biol.,27:98–115.Google Scholar
  65. Köhler D. 1964b. Veränderung des Geschlechts von Cannabis sativa durch Gibberellinsäure. Ber. Dtach. Bot. Ges., 78: 275–281.Google Scholar
  66. Konopskaya L. 1977. Cytokinin content in pea seeds when germinating, Dokl. Acad. Nauk SSSR., 236: 1270–1272. (Engl. transi). in: Dokl. Bot. Sci. 235–237: 113–115.Google Scholar
  67. Krekule J. and F. Seidlova. 1977. Effects of exogenous cytokinins on flowering of the short-day plant Chenopodium rubrum L. Biol. Plant., 19: 142–149.Google Scholar
  68. Kroker B. 1950. Growth Plants.IL. Moscow, pp 1–155.Google Scholar
  69. Kulaeva O. N. 1973. Cytokinins, their structure and function. (In Russian). Nauka. Moscow. pp 1–264.Google Scholar
  70. Kursanov A. L. 1960. Interrelation of physiological processes. (In Russian). Timiryazev Lectures No. XX. Acad. Nauk SSSR. (Moscow) pp. 1–44.Google Scholar
  71. Kursanov A. L. 1976. Assimilate transport in plants. (In Russian). Nauka. ( Moscow ). PP q1–646.Google Scholar
  72. Kuznetzov A. I., V. S, Andreev, R. G. Belyaeva and L. I. Evdokimova. 1980 Genetic control of the hormonol regulation of sex expression in Papaver somniferum plants. Genetics of Development. Tashkent. pp 104–105.Google Scholar
  73. Kovalchuk J. G. 1977. Biogene ethylene in chemical interaction in plants. (In Russ). Interaction of plants and microorganisms in phytocenosis. Nauka Kiev. pp 12–20.Google Scholar
  74. Laibach F. and F. J. Kribben. 1950a. Der Einfluss von Wuchsstoff auf die Bildung männlicher und weiblicher Blüten bei einer monozischen Pflanze (Cucumis sativa L.).Ber. Dtsch. bot Ges. 62: 53–55.Google Scholar
  75. Laibach F. and F. J. Kribben. 1950b. Der Einfluss von Wuchsstoff auf das Geschlecht der Blüten bei einer monözischen Pflanzen. Beitr Biol. Pflanzen., 28: 64–67.Google Scholar
  76. Lang A. 1957. The effect of gibberellin upon flower formation Proc. Nat. Acad. Sci. USA. 43: 709–717.PubMedGoogle Scholar
  77. Lang A. 1965a. Stem elongation in a rosette plant induced by gibberellic acid. Naturwissenschaften. 43: 257–258.Google Scholar
  78. Lang A. 19656. Indication of flower formation on Bienni al Hyoscyanus by treatment with gibberellin. Naturwissenschaften. 43: 284–285.Google Scholar
  79. Lebedeva A. T. and O. V. Jrina. 1970. Influence of selection according to the power of root system in cucumber plants on seed yield and their absolute weight under green house conditions. Pr. of young scientists and post-graduate students on breeding and seed-growing of vegetables. VIR Press. Leningrad. 3: 50–54.Google Scholar
  80. Letham D. S. and M. W. Williams. 1965. Regulators of cell division in plant tissues. VIII. The cytokinins of the apple fruit. Physiol Plant., 322: 925–928.Google Scholar
  81. Levchenko V. I. 1937. Changes in the morphology of a flower in a hamp plant under the influence of a shorted day and traumatic damage. Selected works of the All- Union Research Institute of hemp Plants. 1937. Kiev. 5: 109–124.Google Scholar
  82. Lieberman M. andA. T. Kunishi. 1972. Thoughts on the role of ethylene in plant growth and development. In: Plant Growth Substances. D. J. Carr (ed.). Spring-Verleg. N. Y. pp 549–560.Google Scholar
  83. Lozhnikova V. N. 1965. Natural gibberellins and their importance in the process of photoperiodism and plant vernalization. Inst. Physiol. Plants. (Moscow). pp 1–24.Google Scholar
  84. Lozhnikova V. N., L. P. Khlopenkova and M. Kh. Chailakhyan. 1973. Determination of natural gibberellins in plants tissues. Methodes of determination of Phytohormones, growth inhibitors, defoliants and herbicides. (In Russian). Nauka, (Moscow), pp 50–68.Google Scholar
  85. Lozhnikova V. N. and M. Kh. Chailakhyan. 1975. Reaction of darkness interuption with light and growth inhibitors. (In Russian). Dokl. Acad. Nauk SSSR. 222: 1242–1245.Google Scholar
  86. Lvova I. N. 1963. Sex in Plants. Univ. Press. Moscow. pp 1–56. Makarevich V. A. 1935. Light influence on hemp development. (In Russian). Selected works of the All-Union Research Institute of Hemp Plants. Kiev. 8: 157–164.Google Scholar
  87. Maurinya Kh. A. and B. V. Berzinya-Berzite. 1974. Interrelation between oxidation-reduction processes in plants and their sex reduction (In Russian). Nauchn. Tr. Vses. Sel. Genet. Inst. 11: 116–121.Google Scholar
  88. Martin C. 1977. Quelques aspects biochimique de floraison. Selec. Franc. 23: 27–31.Google Scholar
  89. Mazin V. V., L. S. Shashkova, L. N. Andreev., E. I. Komizerko, N. M. Zhloba and V. I. Kefeli. 1976. Specificity of kinetin effect on amarantin formation in Arnaranthus caudatus L. and on the growth of calluses of Glycine soja L. cotyledons.Google Scholar
  90. McPhee H. C. 1924. The influence of environment on sex in hemp, Cannabis sativa L. J. Agr. Res. 28: 1067–1080.Google Scholar
  91. Miginiac E. 1978. Some aspects of regulation of lowering role of correlative factors in photoperiodic plants. Bot. Mag. Tokyo, Spce iss. pp 159–173.Google Scholar
  92. Minina E. G. 1949. Importance of age sex determination in plants. (In Russian). Dokl. Akad. Nauk SSSR 69: 93–96.Google Scholar
  93. Minina E. G. 1952. Modification of sex in plants under the influence of factors of the external environment. (In Russian). Acad. Sci. USSR. (Moscow). pp 1–199.Google Scholar
  94. Minina E. G. 1954. Biological basis of flowering and fruiting of quercus. (In Russian) Tr. Inst. of Foyest Acad. Sci. USSR, 17: 5–97.Google Scholar
  95. Minina E. G. 1960. Sex determination in forest trees. (In Russian). Tr. Inst. of Forest Acad. Sci. USSR.,47: 76–161.Google Scholar
  96. Minina E. G. and J. G. Tylkina. 1947. Physiological study of gases upon sex differentiation in plants (In Russian). Dokl. Acad. Nauk. SSSR. 55: 165–167.Google Scholar
  97. Minina E. G. and S. V. Kushnirenko. 1949. The role of leaves in the sexuality of plants (In Russian). Dokl. Acad. Nauk. SSSR. 64: 261–264.Google Scholar
  98. Minina E. G. and N. A. Larionova. 1979. Morphogenesis and sex expression in conifers. Nauka. (Moscow) pp 1–216.Google Scholar
  99. Mizrahi Y., and A. E. Richmond. 1972. Abscicic acid in relation to mineral deprivation. Plant Physiol., 50: 667–670.PubMedGoogle Scholar
  100. Mrhan Ram H. Y. and V. S. Jaiswal, 1970. Induction of female flowers on male plants of Cannabis sativa by 2-chloroethane phosphonic acid. Experientia. 26: 214–216.Google Scholar
  101. Mohan Ram H. Y., and V. S. Jaiswal 1972. Induction of male flowers of female plants of Cannabis sativa by gibberellin and its inhibition by abscisic acid. Planta. 105: 263–266.Google Scholar
  102. Molliard M. 1898 a. De 1 ‘hermaphroditism chez la Mercuriale et le chanvre. Rev. gen. Bot.,10: 320–326Google Scholar
  103. Molotkovsky G. Kh. 1960. The theory of polarity in plant development.Google Scholar
  104. Part II. (In Russian). Bull. Mosk. Obshch. Ispyt. Prirody. 65. (6): 65–77.Google Scholar
  105. Molotkovsky G. Kh. 1968. Polarity of development and physiological genetics in plants. (In Russian). Univ. Press. Chernovitsy. pp. 1–302.Google Scholar
  106. Molotkovsly G. Kh. 1976. Bisexual double development and plant geterolis. Fisiol. Biokhim. Kult. Rast., 8: 384–390.Google Scholar
  107. Mothes K. 1964. The role of kinetin in plant regulation In: Collo9, Intern. Centre Nat. Rech. Sci. P: CRNS., 123: 131–140.Google Scholar
  108. Mothes K., L. Engelbrecht and O. Kulajewa. 1959. Uber die Wirkung des kinetins auf Stickstoffverteilungi und Eiweissynthese in isolierten Blatten. Flora (Jena), 147: 445–447.Google Scholar
  109. Muromtsev G. S. and N. V. Rusanova. 1966. Biological method of determination of gibberellin concentration. (In Russian). Methods of determination of growth regulators and herbicides. Nauka. (Moscow). pp 89–96.Google Scholar
  110. Murorntsev G. S. and V. N. Agnistikova. 1973. Plant Hormones. Gibberellins. (In Russian) 1Vaulca (Moscow) pp 1–270.Google Scholar
  111. Negi S. S. and H. P. Olmo. 1972. Certain embryological and biochemical aspects of cytokinin SD 8339 in covering sex of male Vitis vinifera (sylvestris). Amer. J. Bot., 59: 851–857.Google Scholar
  112. Neskovic M. and R. Konjevic. 1974. The non-reversible effects of red and far-red light on the content of gibberellin-like substances in pea internodes. J. Exp. Bot., 25: 733–739.Google Scholar
  113. Owens J. N. and R. P. Pharis. 1967. Initiation and ontogeny on the microsporangiate cone in Cupressus arizonica in response to gibberellin. Canad. J. Bot., 54: 1260–1272.Google Scholar
  114. Owens J. N. and R. P. Pharis. 1971. Initiation and development of Western red cedar cones in response to gibberellin induction and natural conditions. Canad. J. Bot., 49: 1165–1175.Google Scholar
  115. Pharis R. P. and J. N. Owens. 1966. Hormonal induction of flowering in conifers. Yale Sci. Mag., 41: 10–19.Google Scholar
  116. Pharis R. P. and W. Morf. 1968. Physiology of gibberellin induced flowering in conifers. In: Biochemistry and Physiology of Plant Growth Substances. F. Wightman (ed.). Ottawa Rungepress. pp 1341–1356.Google Scholar
  117. Pharis R. P. M. W. Morf and J. N. Owens. 1970. Development of gibberellin-induced ovulate strobilus of Western red cedar: quantitative requirement of long -day, short long day. Canad. J. Bot., 47; 415–420.Google Scholar
  118. Pharis R. P., R. L. Wample and A. Kameienska. 1975. Growth, development and sexual differentiation in Pinus with emphasis on the role of the plant hormone, gibberellin, In: Proc. Symp. Mang. Lodgepole Pine Ecosysems. pp 106–134.Google Scholar
  119. Pravdin L. Ph. 1950. Sex dimorphism Pinus silvestris. Tr. Inst. of Forest Acad. Sci. USSR. 3: 190–201.Google Scholar
  120. Rozanova M. A. 1935. Sex problem in higher plants. In: Theoretical basis of plant selection Gosizdat Agrohiol. sovchoz and kolchoz. Lit. Moscow, Leningrad., 1; 145–162.Google Scholar
  121. Rudich L, A. H. Halevy and N. Kedar. 1972. Interaction of gibberellin and SADH on growth and sex expression of muskmelon. J. Amer. Soc. Hort. Sci., 97: 369–372.Google Scholar
  122. Rudich J. and A. H. Halevy. 1974. Involvement of abscisic acid in the regulation of sex expression in the cucumber. Plant and Cell Physiol., 15: 635–637.Google Scholar
  123. Sabinin D. A. 1937. Mineral nutrition as a factor of formation. Byull. Mosk. Ova Ispyt. Pror., 46 (1): 67–80.Google Scholar
  124. Sabinin D. A. 1940. Mineral nutrition of plants Acad. Sci. USSR. Moscow. Leningrad. pp 1–306.Google Scholar
  125. Sabinin D. A. 1949. On the role of the root system in the vital activity of plants. (In Russian). Timiriazev lectures No. IX Acad. Sci. USSR. (Moscow) pp 1–47.Google Scholar
  126. Sabinin D. A. 1963. Physiology of plant development. Acad. Sci. USSR. (Moscow). pp 1–196.Google Scholar
  127. Saito T. and H. Ito. 1961. Factors responsible for the sex expression of Japanese cucumber L. XI Role of the leaves. J. Jap. Soc. Hort. Sci. 30: 137–147.Google Scholar
  128. Shain S. S. 1963. Directed changes of heredity in agricultural plants under the influence of light regimes. In: Control of heredity in agricultural plants. Acad. Sci. USSR. (Moscow). pp 83–89.Google Scholar
  129. Sidorsky A. G. 1972. Influence of metabolite processes in leaves and forming flowers on total trend of sex differentiation in plants. Soy. Physiol. Plant., 19: 99–105.Google Scholar
  130. Sidorsky A. G. 1978. Changes of direction of sexual differentiation in plants under the influence of physiological active substances. (In Russian). Uspeklii Sovrem. Biol.,85 (1) 111-124.Google Scholar
  131. Sidorsky A. G. and E. A. Sidorskya. 1970. Shift in sex ration in cucumber puring ontogenesis. Ontogensis, 1: 519–525.Google Scholar
  132. Sotta B. 1978. Interaction du photopériédisme et des effects de la zéatine, du saccharose et de l’eau dans la floraison du Chenopodium polyspermum. Physiol. Plant., 43: 337–342.Google Scholar
  133. Splittstoesser W. E. 1970. Effect of 2-chlorethylphosphonic acid and gibberellic acid on the sex expression and growth of pumpkins. Physiol. Plant., 23: 762–768.Google Scholar
  134. Schaffner J. H. 1919 a. Complete reversal of sex in hemp.Science., 50: 311–312.Google Scholar
  135. Schaffner J. H. 1921. Influence of environment on sexual expression in hemp. Bot. Gez., 71: 197–219.Google Scholar
  136. Schaffner J. H. 1927 a. Sex and sex determination in the light of observation and experiments on dioecious plants. Amer. Natur. 61: 319–322.Google Scholar
  137. Schaffner J. H. 1927 b. Control of sex reversal in the tassel of India corn. Bot. Gez., 83: 440–449.Google Scholar
  138. Schaffner J. H. 1935. Observation and experiments on sex in plants. Bull. Torrey Bot. Club, 62: 387–401.Google Scholar
  139. Thompson A. E. 1955. Methods of producing first generation hybrid seed in spinach. Mem. Cornwell Univ. Agr. Exp. Stu. 336: 1–48.Google Scholar
  140. Tompsett P. B. 1971. Studies of growth and flowering in Picea sitchenis (Bong.). Carr. 2. Initiation and Development of Male Female and Vegetative Buds. Ann. Bot., 42: 889–900.Google Scholar
  141. Torrey J. G., J. G. Zobel and R. Zobel. 1977. Root growth and morphogenesis. In: The Physiology of the Garden Pea. J. F. Sutclife and J. S. Pate (eds.). Acad. Press. 12: pp 119–152.Google Scholar
  142. Tournois J. 1911. Anomalies floales du Houblon Japonais et du Chanvre déterminéés par des hatifs. C. r. Aead. Sci. 153: 1017–1020.Google Scholar
  143. Uglov P. D. 1958. Nitrogen influence on ration of staminate and pistillate flowers in cncumber under conditions of different soil humidity. Uchen. zap. Pedagogical Inst. Leningrad. 192: 185–192.Google Scholar
  144. Ustinova E. I. 1956. Some peculiarities in the formation of generation organs in maize inflorescences. Bot. Journal. 41: 864–867.Google Scholar
  145. Van Staden J. 1973. An evaluation of techniques used for extracting endogenous cytokinins from plant material. J. South Afr. Bot. 39: 261–267.Google Scholar
  146. Vavilov N. I. 1932. Genetics in the service of socialist agriculture. Tr. po prikl. bot., gehet. and selec., 4: 19–42.Google Scholar
  147. Walter O. A. and M. Ph. Lilienshtern. 1934. To diagnostics of sex in hemp. (In Russian). Dokl Acad. Nuck. SSSR. 1: 515–521.Google Scholar
  148. Wareing P. F. and A. K. Seth. 1967. Ageing and senescence in the whole plant. Symp. Soc. Exp. Biol.Cambridge Univ. Press, 21: 543.Google Scholar
  149. Wareing P. F., H. M. M. El—Antably, J. Good and J. Manuel. 1967.Google Scholar
  150. The possible and mode of action of abscisin (dormin) In: The Regulation of plant growth and development. Univ. Rostoc. Mathk. Naturwiss. Reine. 4/5: 667–672.Google Scholar
  151. Went F. M. Wuchsstoff and Wachstum. 1928. Rec. Tray. Bot. neerl. 25: 1–116.Google Scholar
  152. White Ph. P. 1946. Cultivation of animal tissues in vitro in nutrients of precisely known constitutions. Growth 10,: 231.Google Scholar
  153. Wittwer S. H. and M. Y. Bukovac. 1958. The effect of gibberellin on economic crops. Econ. Bot., 12: 213–225.Google Scholar
  154. Yamada I. 1943. The sex chromosomes of Cannabis sativa. Rep. Kihara Inst. Biol. Res. 2: 64–68.Google Scholar
  155. Zimmermann W. A. Untersuchungen über die räumliche and zeitliche Verteilung des Wuchsstoffer bei Räumen. Ztschr. Bot. 30: 209–252.Google Scholar
  156. Zhukov M. S., M. Kh. Chailakhyan, V. G. Kochankov. and M. M. Sazhko. 1963. The influence of gibberellin on the growth, harvest and technological qualities of hemp. (In Russian). In: Gibberellins and their effect on Plants. Chailakhyan M. Kh, (ed.) Acad. Sci. USSR. Moscow. pp 261–262.Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht and Agro Botanical Publishers (India). 1987

Authors and Affiliations

There are no affiliations available

Personalised recommendations