Hormonal Regulation of Development in Mosses

Part of the Advances in Agricultural Biotechnology book series (AABI, volume 21)


The protonema of mosses is a “morphogenetic system”, meaning that all members of the system are necessary to constitute the normal morphogenesis (Bopp, 1965). The best analysed “system” is the protonema of Funaria hygrometrica, in which the differentiation steps follow each other in a clear sequence. Each step occurs on definite cell types separating the different phases of the first part of gametophytic development (protonema). Upon germination, spores of the moss produce filaments with transverse septae separating adjacent cells. The cells contain many rounded chloroplasts distributed throughout, and the branching is irregular. These filaments constitute chloronema. After attaining a definite physiological maturity (Knoop, 1984), the apical cell of each chloronema filament changes its shape in a continuous process. producing cells containing fewer chloroplasts mainly accumulated in the apical region, oblique cell walls between adjacent cells and a very regular branching: the caulonema. The side branches of the caulonema have a chloronema-like morphology in the beginning. Therefore. Cove and Ashton (1984) called them “secondary chloronema” in contrast to the primary chloronema arising from spores or from the regenerating tissue. But in most cases, the side branches give rise to new caulonema filaments. Its more detailed account is given by Knoop (1984). In many mosses of the “Funaria type” (Bopp, 1961), very young side branches of the first and second order can be transformed into buds in a third step, which constitute early stages of gametophore development.


Side Branch Plant Growth Substance Ceratodon Purpureus Gametophytic Development Auxin Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ashton, N. W., Cove, D. J. and Featherstone, D. R. 1979a. The isolation and physiological analysis of mutants of the moss, Physcomitrella patens, which overproduce gametophores. Planta, 144: 437–443.CrossRefGoogle Scholar
  2. Ashton, N. W., Grimsley, N. H. and Cove, D. J. (1979b). Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta, 144: 427–435.CrossRefGoogle Scholar
  3. Bauer, L. (1966). Isolierung und Testung einer kinetin-artigen Substanz aus Kalluszellen von Laubmoossporophyten. Z. Pflanzenphysiol., 54: 241–253.Google Scholar
  4. Beutelmann, P. and Bauer, L. (1977). Purification and identification of a cytokinin from moss callus cells. Planta, 133: 215–217.CrossRefGoogle Scholar
  5. Bhatla, S. C. and Bopp, M. (1985). The hormonal regulation of protonema development in mosses. III. Auxin-resistant mutants of the moss Funaria hygrometrica Hedw. J. Plant Physiol.,(in press).Google Scholar
  6. Bhatla, S. C. and Chopra, R. N. (1984). Subcellular localisation of adenylate cyclase in the shoot apices of Bryum argenteum Hedw. Ann. Bot., 54: 195–200.Google Scholar
  7. Bopp, M. (1953). Die Wirkung von Heteroauxin auf Protonemawachstum und Knospenbildung von Funaria hygrometrica. Z. Bot., 41: 1–16.Google Scholar
  8. Bopp, M. (1959). Versuche zur Analyse von Wachstum und Differenzierung des Laubmoosprotonemas. Planta, 53: 178–197.Google Scholar
  9. Bopp, M. (1961). Die Morphogenese der Laubmoose. Biol. Rev. Cambr. Phil. Soc., 36: 237–280.CrossRefGoogle Scholar
  10. Bopp, M. (1963). Development of the protonema and bud formation in mosses. J. Linn. Soc. London Bot., 58: 305–309.CrossRefGoogle Scholar
  11. Bopp, M. (1965). Entwicklungsphysiologie der Moose. Handbuch der Pflanzenphysiologie XV. pp 802–843.Google Scholar
  12. Bopp, M. (1968). Control of differentiation in fern-allies and bryophytes. Ann. Rev. Plant Physiol., 19: 361–380.CrossRefGoogle Scholar
  13. Bopp, M. (1974). Action mechanism of cytokinins in mosses (A model for the effects of cytokinins). In: Plant Growth Substances 1973.Google Scholar
  14. Proceedings of the 8th International Conference on Plant Growth Substances. Hirokawa Publishing Co., Tokyo. pp 934–944.Google Scholar
  15. Bopp, M. (1980). The hormonal regulation of morphogenesis in mosses. In: Plant Growth Substances 1979 (ed. F. Skoog ). Springer-Verlag, Berlin. pp 351–361.CrossRefGoogle Scholar
  16. Bopp, M. (1982). How can external hormones regulate development in mosses. J. Hattori Bot. Lab., 43: 159–169.Google Scholar
  17. Bopp, M. (1983), Developmental physiology of bryophytes. In: New Manual of Bryology (ed. R. M. Schuster ). The Hattori Botanical Laboratory. Nichinan, Miyazaki, Japan. pp 276–324.Google Scholar
  18. Bopp, M. (1984). The hormonal regulation of protonema development in mosses. II. The first steps of cytokinin action. Z. Pflanzenphysiol., 113: 435–444.Google Scholar
  19. Bopp, M. and Diekmann, W. (1967). Versuche zur Analyse von Wachstum und Differenzierung der Moosprotonemen. Planta, 74: 86–97.CrossRefGoogle Scholar
  20. Bopp, M. and Erichsen, U. (1981). Metabolism of cytokinins in mosses. In: Metabolism and molecular activities of cytokinins. Proceedings in Life Sciences. (eds. J. Guern and C. Péaud-Lenoel ). Springer-Verlag. Berlin. pp 105–114.CrossRefGoogle Scholar
  21. Bopp, M. and Fell, J. (1976). Manifestation der Cytokinin abhängigen Morphogenese bei der Induktion von Moosknospen. Z. Pflanzenphysiol., 79: 81–87.Google Scholar
  22. Bopp, M. and Gerhäuser, D. (1985). Localisation of hormone responses in lower plants. Biol. Plant.,(in press).Google Scholar
  23. Bopp, M. and Knoop, B. (1974). Régulation de la différenciation chez le protonéma des mousses. Colloq. Bryol., Soc. Bot. Fr. 121: 145–152.Google Scholar
  24. Brandes, H. (1967). Die Wirkung von Kinetin auf die Protonemaentwicklung verschiedner Laubmoosarten. Rev. Bryol. Lichenol. 35: 158–164.Google Scholar
  25. Brandes,H; and Kende, H. (1968). Studies on cytokinin-controlled bud formation in moss protonema. Plant Physiol., 43: 827–837.PubMedCrossRefGoogle Scholar
  26. Chopra, R. N. and Gupta, U. (1967). Dark induction of buds in Funaria hygrometrica Hedw. Bryologist, 70: 102–104.Google Scholar
  27. Cove, D. J. (1984). The role of cytokinin and auxin in protonema development in Physcomitrella patens and Physcomitrium sphaericum In: Proceedings of the World Conference of Bryology, Tokyo, 1983. The Hattori Botanical Laboratory, Nichinan, Miyazaki, Japan. pp 79–86.Google Scholar
  28. Cove, D. J. and Ashton, N. W. (1984). The hormonal regulation of gametophytic development in broyophytes. In; The experimental Biology of Bryophytes. (eds. A. F. Dyer and J. G. Ducket). Academic Press, London. pp 177–201.Google Scholar
  29. Cove, D. J., Ashton, N. W., Featherstone, D. R. and Wang, T. L. (1980). The use of mutant strains in the study of hormone action and metabolism in the moss, Physcomitrella patens. In: The Proceedings of the Fourth John Innes Symposium, 1979 (eds. D. R. Davies and D. A. Hopwood ). John Innes Charity, Norwich, England. pp 231–241.Google Scholar
  30. Erichsen, J. Knoop., B. and Bopp, M. (1977). On the action mechanism of cytokinins in mosses: caulonema specific proteins. Planta, 125: 161–168.CrossRefGoogle Scholar
  31. Erichsen. U., Knoop, B. and Bopp, M. (1978). Uptake, transport and metabolism of cytokinins in moss protonema. Plant and Cell Physiol., 19: 839–850.Google Scholar
  32. Gardner, G., Sussmann, M. R. and Kende, H. (1978). In vitro cytokinin binding to the particulate cell fraction from the protonema of Funaria hygrometrica. Planta., 143: 67–73.CrossRefGoogle Scholar
  33. Gerhäuser, D. (1982). Untersuchungen zum Metabolismus von Kinetin und 6-Benzylaminopurin sowiezu endogenem Cytokinin in Protonemen von Funaria hygrometrica (L.) Sibth. Diplomarbeit. Fakultät für Biologie, Universität Heidelberg, West Germany.Google Scholar
  34. Gorton, B. S. and Eakin, R. E. (1957) Development of the gametophyte in the moss Tortella caespitosa. Bot. Gaz., 119: 31–38.CrossRefGoogle Scholar
  35. Hahn, H. (1968). Die Wirkung von Cytokininen auf die Knospenbildung isolierter Caulonemen von Funaria hygrometrica. Dissertation, Technische Universität Hannover, F. R. G.Google Scholar
  36. Hahn, H. and Bopp, M. (1968). A cytokinin test with high specificity. Planta, 83: 115–118.CrossRefGoogle Scholar
  37. Handa, A. K. and Johri, M. M. (1976). Cell differentiation by 3’,5’-cyclic AMP in a lower plant. Nature, 259: 480–482.CrossRefGoogle Scholar
  38. Handa, A. K. and Johri, M. M. (1977). Cyclic adenosine 3’,5’-monophosphate in moss protonema. A comparison of its levels by protein kinase and Gilman assays. Plant Physiol., 59: 490–496.PubMedCrossRefGoogle Scholar
  39. Handa, A. K. and Johri, M. M. (1979). Involvement of cyclic adenosine 3’,5’-monophosphate in chloronema differentiation in protonema cultures of Funaria hygrometrica. Planta, 144: 317–324.CrossRefGoogle Scholar
  40. Hartmann, E. (1971). Uber den Nachweis eines Neurohormones beim Laubmooskallus und seine Beeinflussung durch das Phytochrom. Planta, 101: 159–165.CrossRefGoogle Scholar
  41. Hartmann, E. and Kilbinger, H. (1973). Gas-liquid-chromatographic determination of light-dependent acetylcholine concentrations in moss callus. Biochem J., 135: 1–4.Google Scholar
  42. Hatanaka-Ernst, M. (1966). Untersuchungen an strahleninduzierten Protonemamutanten von Funaria hygrometrica Sibth. Z. Pflanzenphysiol., 55: 259–277.Google Scholar
  43. Hintermann, R. and Parish, R. W. (1979). Determination of adenylate cyclase activity in a variety of organisms: evidence against the occurrence of the enzyme in higher plants. Planta, 146: 459–462.CrossRefGoogle Scholar
  44. Idzikowska, K. and Szweykowska, A. (1978). The ultrastructural aspects of the cytokinin-induced bud formation in Ceratodon purpureus. Protoplasma 94: 41–52.Google Scholar
  45. Iwasa, K. (1965). Chemical control of morphogenesis in moss protonema. Plant Cell Physiol., 6: 421–429.Google Scholar
  46. Johri, M. M. (1974). Differentiation of caulonema cells by auxins in suspension cultures of Funaria hygrometrica. In: Plant Growth Substances 1973. Hirokawa Scientific Co., Tokyo. pp 925–933.Google Scholar
  47. Johri, M. M. and Desai, S. (1973). Auxin regulation of caulonema formation in moss protonema. Nature, 245: 223–224.Google Scholar
  48. Klein, B. (1967). Versuche zur Analyse der Protonema-entwicklung der Laubmoose. IV. Der endogene Faktor H und seine Rolle bei der morphogenese von Funaria hygrometrica. Planta., 73: 12–27.CrossRefGoogle Scholar
  49. Klein B. and Bopp, M. (1971). Effect of active charcoal in agar on the culture of lower plants. Nature, 230: 474.CrossRefGoogle Scholar
  50. Knoop, B. (1984). Development in bryophytes. In: The Experimental Biology of Bryophytes. (eds. A. F. Dyer and J. G. Ducket ). Academic Press, London. pp 143–176.Google Scholar
  51. Kockel, H. (1967). Vorkommen und Wirkung des Faktors H bei verschiedenen Laubmoosprotonemen. Diplomarbeit Universität Hannover, F. R. G.Google Scholar
  52. Kofler, L. (1959). Contribution â l’étude biologique des mousses cultivées in vitro: Germination des spores, croissance et development du jeune protonéma de mousses. Rev. Bryol. Lichénol., 28: 1–202.Google Scholar
  53. Larpent-Gourgaud, M. (1974). Problèmes posés par les échanges intercellulaires dans le protonéma des bryophytes: Mise en évidence des phénomènes de transport. Colloq. Bryo’., Soc. Bot. Fr., 174: 161–167.Google Scholar
  54. Larpent-Gourgaud, M. and Aumitre, M. P. (1977a). Intercullular exchanges and morphogenesis of protonema of Ceratodon purpureus. Z. Pflanzenphysiol., 83: 467–472.Google Scholar
  55. Larpent-Gourgaud, M. and Aumitre, M.P. (1977b). Action de l’orientation et de la qualité de la 1 umiére sur le development des protonémas de Bryales. Experientia., 33: 1601–1602.CrossRefGoogle Scholar
  56. Lehnert, B. and Bopp, M. (1983). The hormonal regulation of protonema development in mosses. I. Auxin-cytokinin interaction. Z. Pflanzenphysiol., 110: 379–391.Google Scholar
  57. Markmann, U. and Bopp, M. (1985). The hormonal regulation of protonema development in mosses. IV. Role of calcium in cytokinin action. J. Plant Physiol., (in preparation).Google Scholar
  58. Nehlsen, W. (1979). A new method for examining induction of buds by cytokinin. Amer. J. Bot., 66: 601–603.CrossRefGoogle Scholar
  59. Overlach, U. (1976). Untersuchungen über den Einbau, die Wirkung und die Metabolisierung von Kinetin im Laubmoosprotonema. Doctoral Dissertation. University of Heidelberg, West Germany.Google Scholar
  60. Rawat, M. S. and Chopra, R. N. (1976). Production of a morphoregulatory substance by secondary protonema of Bryum klinggraeffii. Z. Pflanzenphysiol., 78: 372–374.Google Scholar
  61. Rohwer, F. and Bopp, M. (1985). Ethylene synthesis in moss protonema. J. Plant. Physiol., 117: 331–338.CrossRefGoogle Scholar
  62. Rose, S., and Bopp, M. (1983). Uptake and polar transport of indoleacetic acid in moss rhizoids. Physiol. Plant., 58: 1–3CrossRefGoogle Scholar
  63. Rose, S., Eberhardt, I. and Bopp, M, (1983a). Temperature dependent auxin efflux from moss protonema. Z. Pflanzenphysiol., 109: 243–249.Google Scholar
  64. Rose, S., Rubery. P. H. and Bopp, M. (1983b). The mechanism of auxin uptake and accumulation in moss protonema. Physiol. Plant., 58: 52–56.CrossRefGoogle Scholar
  65. Rubery, P. H. and Sheldrake, A. R. (1974). Carrier mediated auxin transport. Planta, 118: 101–121.CrossRefGoogle Scholar
  66. Saunders, M. J. and Hepler, P. K. (1981). Localization of membrane associated calcium following cytokinin treatment in Funaria using chlorotetracycline. Planta, 152: 272–281.CrossRefGoogle Scholar
  67. Saunders, M. J. and Hepler, P. K. (1982). Calcium ionophore A. 23187 stimulates cytokinin-like mitosis in Funaria. Science, 217: 943–945.CrossRefGoogle Scholar
  68. Saunders, M. J. and Hepler, P. K. (1983). Calcium antagonists and calmodulin inhibitor block cytokinin-induced bud formation in Funaria. Develop. Biol., 99: 41–49.CrossRefGoogle Scholar
  69. Schultze, A., Hall, P., Bandurski, R. S. and Ashton, N. W. (1985). Identification and estimation of indole-3-acetic acid in gametophytes of the moss, Physcomitrium patens. Planta,(in press).Google Scholar
  70. Sembdner, G., Gross, D., Liebisch, H.-W. and Schneider, G. (1980). Biosynthesis and metabolism of plant hormones. In: Encyclopedia of Plant Physiology. New Series. Vol. 9. Hormonal Regulation of Development 1. Molecular Aspects of Plant Hormones. (ed. J. MacMillan) Springer-Verlag, Berlin. pp 281–444.Google Scholar
  71. Sharma, S., Jayaswal, R. K. and Johri, M. M. (1979). Cell-density-dependent changes in the metabolism of chloronema cell cultures. Plant. Physiol., 64: 154–158.PubMedCrossRefGoogle Scholar
  72. Sharma, S. and Johri, M. M. (1982). Partial purification and characterization of cyclic AMP phosphodiesterases from Funaria hygrometrica. Arch. Biochem. Biophys., 217: 87–97.CrossRefGoogle Scholar
  73. Sood, S. and Chopra, R. N. (1973). A record prep onement of bud induction in the moss Entodon myurus. Z. Pflanzenphysiol., 69: 390–393.Google Scholar
  74. Sood, S. and Hackenberg. D. (1979). Interaction of auxin, antiauxin and cytokinin in relation to the formation of buds in moss protonema. Z. Pflanzenphysiol., 91: 385–397.Google Scholar
  75. Spiess, L. D. (1975). Comparative activity of isomers of zeatin and ribosyl-zeatin on Funaria hygrometrica. Plant Physiol., 55: 583–585.CrossRefGoogle Scholar
  76. Spiess, L. D. (1976). Development effects of zeatin, ribosyl-zeatin and Agrobacterium tumefaciens B6 on certain mosses. Plant Physiol., 58: 107–109.PubMedCrossRefGoogle Scholar
  77. Spiess, L. D., Lippincott, B. B. and Lippincott, J. A. (1984a). Facilitation of moss growth and development by bacteria. J. Hattori. Bot. Lab., 55: 67–77.Google Scholar
  78. Spiess, L. D., Lippincott, B. B. and Lippincott, J. A. (1984b). Influence of octopine, calcium and compounds that affect calcium and compounds that affect calcium transport on zeatin-induced bud formation by Pylaisiella sylwynii. Amet. J. Bot., 71: 1416–1423.CrossRefGoogle Scholar
  79. Szweykowska, A. (1962). The effects of kinetin and IAA on shoot development in Funaria hygrometrica and Ceratodon purpureus. Acta. Soc. Bot. Pol., 31: 553–557.Google Scholar
  80. Szweykowska, A. (1963). Kinetin-induced formation of gametophores in dark cultures of Ceratodon purpureus. J. Exp. Bot., 14: 137–141.CrossRefGoogle Scholar
  81. Szweykowska, A., Dornowska, E., Cybulska, A. and Wasiek, G. (1971). The cell division response to cytokinins in isolated cell cultures of the protonema of Funaria hygrometrica and its comparison with bud induction response. Biochem. Physiol. Pflanz.,162: 514–525.Google Scholar
  82. Szweykowska, A., Korcz, I. Jaskiewicz-Mroczkowska, B, and Metelska, M. (1972). The effect of various cytokinins and other factors on protonemal cell divisions and the induction of gametophores in Ceratodon purpureus. Acta. Soc. Bot. Pol., 41: 401–409.Google Scholar
  83. Von der Eltz, H. (1975). Nativer Morphoregulator (Faktor H) aus Moosprotonemen. Diplomarbeit. Fakultät für Biologie, Universität Heidelberg, West Germany.Google Scholar
  84. Wang, T. L., Beutelmann, P. and Cove, D. J. (1981a). Cytokinin biosynthesis in mutants of the moss, Physcomitrella patens. Plant Physiol., 68: 739–744.Google Scholar
  85. Wang, T. L., Cove, D. J., Beutelmann, P. and Hartmann, E. (1980). Isopentyladenine from mutants of the moss, Physcomitrella patens. Phytochemistry, 19: 1103–1105.Google Scholar
  86. Wang, T. L., Horgan, R. and Cove, D. J. (1981b). Cytokinins from the moss Physcomitrella patens. Plant Physiol.,68: 735–738.CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht and Agro Botanical Publishers (India). 1987

Authors and Affiliations

There are no affiliations available

Personalised recommendations