Hormonal Regulation of Abnormal Growth in Plants

Part of the Advances in Agricultural Biotechnology book series (AABI, volume 21)


The varied abnormal growths in plants are characterised by extensive alterations and overgrowths due to the plant organ losing control over the growth potential of the affected area. Amongst the different types of abnormal growth, galls, hypertrophies, malformations and witches-brooms are worth mention. The various agents or conditions reported to act as incitants of abnormal growth in plants are: physical and chemical agents, genetic constitution, bacteria, viruses, fungi, insects, mites and nematodes. The abnormal growths are unique examples of complex interactions and mutual adaptation between the host and the pathogen. As a result of an attack on a plant by a pathogen the normal growth hormone balance is disturbed which brings about the change in the growth habit of the host. Within the context of this volume the text will be confined to a consideration of some of the important abnormal growths in plants and their hormonal regulation.


Growth Hormone Indoleacetic Acid Abnormal Growth Nitrilase Activity Gall Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Litrature Cited

  1. Ahuja, M. R. and G. L. Hagen 1966a. Chromosomes and nutritional requirements of a tumor forming Nicotiana hybrid and its derivatives (Abstracts). Am. J. Botany, 53: 609.Google Scholar
  2. Abuja, M. R. and G. L. Hagen 1966b. Morphogenesis in Nicotiana debneyi-tobacum, N. longiflora and their tumor forming hybrid derivatives in vitro. Devl. Biol, 13: 408–423.CrossRefGoogle Scholar
  3. Amasino, R. M. and C. O. Miller 1982. Hormonal control of tobacco crown gall tumor morphology. Plant Physiol, 69: 389–392.PubMedCrossRefGoogle Scholar
  4. Ames, I. H. 1971. Gibberellic acid: Effect on genetic tumor induction. Can. J. Botany, 49: 1699–1701.CrossRefGoogle Scholar
  5. Ames, I. H. 1972. The influence of cytokinins on genetic tumor formation. Can. J. Botany, 50: 2235–2238.CrossRefGoogle Scholar
  6. Ames, I. H. 1976. The possible role of cyclic AMP in the control of genetic tumor induction. Plant Cell Physiol, 17: 1059–1066.Google Scholar
  7. Ames, I. H., R. A. Richman and J. P. Weiss 1980. Is cyclic GMP involved in the regulation of tumorigenesis in Nicotiana genetic tumor system? Plant Cell Physiol, 21: 367–372.Google Scholar
  8. Arya, H. C., A. C. Hildebrandt, and A. J. Riker 1962. Growth in tissue culture of single cell clones from grape-stem and Phylloxera-gall. Plant Physiol, 37: 387–392.PubMedCrossRefGoogle Scholar
  9. Arya, H. C., G. S. Vyas and P. Tandon 1975. The problem of tumor formation in plants. In: Form, Structure and Function in Plants. H. Y. Mohan Ram, J. J. Shah and C. K. Shah (eds). Sarita Publishers, Meerut, India. pp 270–279.Google Scholar
  10. Arya, H. C., N. S. Shekhawat and S. D. Purohit 1981. Accumulation of aromatic compounds as related to abnormal growth in plants. J. Indian Bot. Soc, 60: 237–251.Google Scholar
  11. Balasubramaniamy, M. and G. Rangaswami 1962. Presence of indole compound in nematode galls. Nature, 194: 774–775.CrossRefGoogle Scholar
  12. Bayer, M. H. 1965. Paper chromatography of auxins and their inhibitors in two Nicotiana species and their hybrid. Am. J. Botany, 52: 883–890.CrossRefGoogle Scholar
  13. Bayer, M. H. 1967. Thin layer chromatography of auxin and inhibitors in Nicotiana glauca, N. langsdorffii and three of their tumor-forming hybrids. Planta, 72: 329–337.CrossRefGoogle Scholar
  14. Bayer, M. H. 1977. Phytohormone und pflanzlice Tumorgenese. Beitr. Biol. Pflanz, 53: 1–54.Google Scholar
  15. Bayer, M. H. 1982. Genetic tumors: Physiological aspects of tumor formation in interspecies hybrids. In: Molecular Biology of Plant Tumors. G. Kahl and J. S. Schell (eds.) Academic Press. New York. pp 33–67.Google Scholar
  16. Bayer, M. H. and M. R. Ahuja 1968. Tumor formation in Nicotiana: Auxin levels and auxin inhibitors in normal and tumor-prone genotypes. Planta, 72: 292–298.CrossRefGoogle Scholar
  17. Beauchesne, G. 1974. L’indole et le tryptophane “regulateurs” de croissance, en culture “in vitro”, pour les tissue de parenchyme médullaire de tabac, normaux et tumoraux Physiol. Plantarum, 31: 189–192.CrossRefGoogle Scholar
  18. Bhansali, R. R., A. Kumar and H. C. Arya 1978. Polyphenols and related enzymes in normal and gall tissues of Ficus mysorensis Heyne. Indian J. exptl. Biol, 16: 850–851.Google Scholar
  19. Bird, A. F. 1973. Observations on chromosomes and nucleoli in syncytia induced by Meloidogyne javanica. Physiol. Plant Pathol, 3: 387–391.CrossRefGoogle Scholar
  20. Black, L. M. 1945. A virus tumor disease of plants. Am. J. Botany, 32: 408–415.CrossRefGoogle Scholar
  21. Black, L. M. 1949. Virus tumors. Survey of Biol. Progr, 1: 155–231.Google Scholar
  22. Black, L. M. 1957. Viruses and other pathogenic agents in plant tissue cultures. J. Nat. Cancer Inst, 19: 663–685.PubMedGoogle Scholar
  23. Black, L. M. 1972. Plant tumors of viral origin. Progr. Exptl. Tumor Research, 15: 110–137.Google Scholar
  24. Black, L. M. 1979. Vacteir cell monolayers and plant viruses. Adv. Virus Res, 25: 191–271.PubMedCrossRefGoogle Scholar
  25. Black, L. M. 1982. Wound tumor disease. In: Molecular Biology of Plant tumors. G. Kahl and J. S. Schell (eds). Academic Press. New York. pp 69–105.Google Scholar
  26. Black, L. M. and C. L. Lee 1957. Interaction of growth-regulating chemicals and tumefacient virus on plant cells. Virology, 3: 146–159.PubMedCrossRefGoogle Scholar
  27. Braun, A. C. 1958. A physiological basis for the autonomous growth of the crown-gall tumor cell. Proc. Natl. Acad. Sci. USA, 44: 363–371.CrossRefGoogle Scholar
  28. Braun, A. C. 1969. Abnormal growth in plants, In: Plant Physiology a Treatise. V.B. F. C. Steward (ed.) Academic Press, New York. pp 379–420.Google Scholar
  29. Braun, A. C. 1972. The relevance of plant tumor systems to an understanding of the basic cellular mechanisms underlying tumorigenesis. Progr. Exptl. Tumor Research, 15: 165–187.Google Scholar
  30. Braun, A. C. 1982. A history of crown-gall problem. In: Molecular Biology of Plant Tumors. G. Kahl and J. S. Schell (eds). Academic Press, New York. pp 155–210.Google Scholar
  31. Braun, A. C. and T. Stonier 1958. Morphology and physiology of plant tumors. Protoplasmatologia, 10: 5a Springer-Verlag, Vienna. 93 p.Google Scholar
  32. Butcher, D. N. 1973. The origins, characteristics and culture of plant tumor cells. In: Plant Tissue and Cell Culture. H. E. Street (ed). Blackwell Scientific Publications. Oxford. pp 356–391.Google Scholar
  33. Butcher, D. N., S. El-Tigani and D. S. Ingram 1974. The role of indole glucosinolates in the clubroot disease in Cruciferae. Physiol. Plant Pathol, 4: 127–141.CrossRefGoogle Scholar
  34. Butler, E. J. 1907. Mem. Dept. Agr. India, Bot. Ser, 5: 1.Google Scholar
  35. Cheng, T. Y. 1972. Induction of indoleacetic acid synthesis in tobacco pith explants. Plant Physiol, 50: 723–727.PubMedCrossRefGoogle Scholar
  36. Chilton, M. D., M. H. Durmond, D. J. Merlo, D. Sciaky, A. L. Montaya, M. P. Gordon and E. W. Nester. 1977. Stable incorporation of plasmid DNA into plant cells: the molecular basis of crown-gall tumorigenesis. Cell, 11: 263–271.PubMedCrossRefGoogle Scholar
  37. Chilton, M. D., R. K. Saiki, N. Yadav, M. P. Gordon and F. Quetier 1980. T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown-gall tumor cells. Proc. Natl. Acad. Sci. USA, 77: 2693–2697.PubMedCrossRefGoogle Scholar
  38. Cutler, H. G. and L. R. Krusberg 1968. Plant growth regulators in Ditylenchus dipsaci, Ditylenchus triformis and host tissues. Plant & Cell Physiol, 9: 478–497.Google Scholar
  39. Dekhuijzen, H. M. 1976. Endogenous cytokinins in healthy and diseased plants. In: Physiological Plant Pathology. R. Heitefuss and P. H. Williams (eds). Springer-Verlag. Berlin. pp 526–559.CrossRefGoogle Scholar
  40. Dekhuijzen, H. M. 1980. The occurrence of free and bound cytokinins in club-roots and Plasmodiophora brassicae infected turnip tissue cultures. Physiol. Plant, 49: 169–176.CrossRefGoogle Scholar
  41. Dekhuijzen, H. M. and J. C. Overeem 1971. The role of cytokinins in club-root formation. Physiol. Plant Pathol, 1: 151–162.CrossRefGoogle Scholar
  42. Depicker, A., M. Van Montagu and J. Schell 1978. Homologous DNA sequences in different Ti plasmids are essential for oncogenicity Nature, 275: 150–152.CrossRefGoogle Scholar
  43. Doi, Y., M. Terenaka, K. Yora and H. Asuyama 1967. Mycoplasma or PLT group-like microorganisms found in the phloem elements of plants infested with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom (in Japanese). Ann. Phytopathol. Soc., Japan, 33: 259–266.CrossRefGoogle Scholar
  44. Douce, R. and J. Roussaux 1969. Composition phospholipidique de plantules de pois Annonay, traitees par diverses cytokinines on inocutées par le Corynebacterium fascians (Tilford) Dowson. Compt. Rend. Acad. Sci. Paris Ser. D., 268: 796–799.Google Scholar
  45. Dropkin, V. H., J. P. Helgeson and C. D. Upper 1969. The hypersensitivity reaction of tomatoes resistant to Melodogyne incognita: Reversal by cytokinins. J. Nematol, 1: 55–61.PubMedGoogle Scholar
  46. Drummond, M. H., M. P. Gordon, E. W. Nester and M. D. Chilton 1977. Foreign DNA of bacterial plasmid origin is transcribed in crown-gall tumors. Nature, 269: 535–536.CrossRefGoogle Scholar
  47. Einset, J. W. 1980. Cytokinins in tobacco crown-gall tumors. Biochem. Biophys. Res. Commun, 93: 510–515.PubMedCrossRefGoogle Scholar
  48. Gurley, W. B., J. D. Kemp, M. J. Albert, D. W. Sutton and J. Callis 1979. Transcription of Ti plasmid-derived sequences in three octopine-type crown gall tumor lines. Proc. Natl. Acad. Sci. USA, 76: 2828–2832.PubMedCrossRefGoogle Scholar
  49. Hamilton, J. L.,R. H. Lowe and F. Skoog 1972. False broomrape: A physiological disorder caused by growth-regulator imbalance. Plant Physiol, 50: 303–304.Google Scholar
  50. Harvey, A. E. and J. L. Grasham 1969. Growth of the rust fungus Cronartium ribicola in tissue culture of Pinus monticola. Can. J. Botany, 47: 663–666.CrossRefGoogle Scholar
  51. Harvey, A. E., J. L. Grasham and C. C. Waldron 1971. The effects of growth regulating compounds on healthy and blister rust-infected tissue cultures of Pinus monticola. Phytopathology, 61: 507–509.CrossRefGoogle Scholar
  52. Helgeson, J. P. and N. J. Leonard 1966. Cytokinins: Identification of compounds isolated from Corynebacterium fasciaas. Proc. Nat. Acad. Sci. USA, 56: 60–63.PubMedCrossRefGoogle Scholar
  53. Hildebrandt, A. C. 1965. Tissue culture as an aid in the study of plant disease. Adv. Agr. Sci. Appl., 584–597.Google Scholar
  54. Holsters, M., B. Silva, F. Vliet, C. Genelello, M. Block, P. Dhaese, A. Depicker, D. Inze, G. Engler, R. Villarroel, M. Montagu and J. Schell 1980. The functional organisation of the nopaline A. tumefaciens plasmid p TiC 58. Plasmid, 3: 212–230.CrossRefGoogle Scholar
  55. Ingram, D. S. 1969. Growth of Plasmodiophora brassicae in host callus. J. Gen. Microbiol, 55: 9–18.Google Scholar
  56. Ingram, D. S. 1973. Growth of plant parasites in tissue culture. In: Plant Tissue and Cell Culture. H. E. Street (ed). Blackwell Scientific Publications, Oxford. pp 392–421.Google Scholar
  57. Ingram, D. S. and I. C. Tommerup 1972. The life history of Plasrnodiophora brassicae. Woron. Proc. Roy. Soc, B, 180: 103–112.CrossRefGoogle Scholar
  58. Jenkins, S. F., P. D. Dukes and S. S. Thompson 1973. Development of a normal tobacco plant from a false broomrape tumor. Phytopathology, 63: 546.CrossRefGoogle Scholar
  59. Joshi, S. C. and P. Tandon 1984. Studies on certain oxidases, their isozymes and phenols as related to gall formation in Leea indica. Biochem. Physiol. Pflanzen, 179: 711–715.Google Scholar
  60. Joshi, S. C., P. Tandon and A. L. S. Rajee 1985. Changes in certain oxidative enzymes and phenolics in Camellia sinensis and Elaeocarpus lansifolius leaf roll-galls. In: Proc. Int. Seminar on Importance of Gall Forming Organisms in Agriculture and Medicine. Allahabad, India (In Press).Google Scholar
  61. Kahl, G, and J. S. Schell (eds). 1982. Molecular Biology of Plant Tumors. Academic Press. New York. 615 p.Google Scholar
  62. Kehr, A. E. and H. H. Smith 1954. Genetic tumors in Nicotiana hybrids. In; Abnormal and Pathological Plant Growth. Brookhaven Symp. Biol, 6: pp, 57–78.Google Scholar
  63. Kiermeyer, O. 1958. Papierchromatographische Untersuchungen Über den Wuchsstoffgchalt von Capsella bursa-pastoris nach Infection mit Albugo candida und Peronospora parasitica. Ost Botan. Z, 105: 515–528.CrossRefGoogle Scholar
  64. Klämbt, D., G. Thies and F. Skoog 1966. Isolation of cytokinins from Corynebacterium fascians. Proc. Nat. Acad. Sci. USA, 56: 52–59.CrossRefGoogle Scholar
  65. Krupasagar, V. and K. R. Barker 1966. Increased cytokinin concentrations in tobacco infected with the root-knot nematode Meloidogyne incognita. Abstract Phytopathology, 56: 885.Google Scholar
  66. Lippincott, J. A. and B. B. Lippincott 1976. Morphogenic determinants as exemplified by the crown-gall disease. In: Physiological Plant Pathology. R. Heitefuss and P. H. Williams (eds). Springer-Verlag. Berlin. pp 356–388.CrossRefGoogle Scholar
  67. Littau, V. C. and L. M. Black 1952. Spontaneous tumors in sweet clover. Amer. J. Botany, 39: 191–194.CrossRefGoogle Scholar
  68. Liu, S. T., C. D. Katz and C. A. Knight 1978a. Indole-3-acetic acid synthesis in tumorous and nontumorous species of Nicotiana. Plant Physiol, 61: 743–747.CrossRefGoogle Scholar
  69. Liu, S. T., G. Gruenert and C. A. Knight 1978b. Bound form indole3-acetic acid synthesis in tumorous and nontumorous species of Nicotiana. Plant Physiol, 61: 50–53.CrossRefGoogle Scholar
  70. Liu,S. T. and C. I. Kado 1979. Indoleacetic acid production,a plasmid function of Agrobacterium tumefaciens c 58. Biochem. Biophys. Res. Commun, 90: 171–178.Google Scholar
  71. Liu, S. T., K. L. Perry, C. L. Schardl and C. I. Kado 1982. Agrobacterium Ti plasmid indoleacetic acid gene is required for crown-gall oncogenesis. Proc. Natl. Acad. Sci. USA, 79: 2812–2816.Google Scholar
  72. Lucas, G. B. 1965. Diseases of tobacco. The Scarecrow Press, Inc., New York. pp 734–737.Google Scholar
  73. Mani, M. S. 1964. Ecology of Plant Galls. Dr. W. Junk Publishers, The Hague.Google Scholar
  74. Maramorosch, K. 1976. Plant mycoplasma diseases In: Physiological Plant Pathology. R. Heitefuss and P. H. Williams (eds). Springer-Verlag, Berlin. pp 150–171.Google Scholar
  75. Meins, F. Jr. 1974. Mechanism underlying the persistence of tumor autonomy in crown-gall disease. In: Tissue Culture and Plant Sciences. Proc. 3rd Intern. Congr. Plant Tissue and Cell Culture.Google Scholar
  76. Leicester England.H. E. Street (ed.) Academic Press, New York. pp 233–265.Google Scholar
  77. Meins, F. Jr. 1982. Habituation of cultured plant cells. In: Molecular Biology of Plant Tumors. G. Kahl and J. S. Schell (eds.). Academic Press, New York. pp 3–31.Google Scholar
  78. Miller, C. O. 1974. Ribosyl-trans-zeatin, a major cytokinin produced by crown-gall tumor tissue. Proc. Natl. Acad. Sci. USA, 71: 334–338.PubMedCrossRefGoogle Scholar
  79. Nakajima, H., T. Yokota, T. Matsumoto, M. Noguchi and N. Takahashi 1979. Relationship between hormone content and autonomy in various autonomous tobacco cells cultured in suspension. Plant Cell Physiol, 29: 1489–1499.Google Scholar
  80. Nickell, L. G. 1955. Nutrition of pathological tissues caused by plant viruses. Annee Biol, 31: 107–121.Google Scholar
  81. Pelet, F., A. C. Hildebrandt, A. J. Riker and F. Skoog 1960. Growth in vitro of tissues isolated from normal stems and insect galls. Amer. J. Botany, 47: 186–195.CrossRefGoogle Scholar
  82. Pengelly, W. and F. Meins 1977. A specific radioimmunoassay for nanogram quantities of auxin, indole-3-acetic acid. Planta, 136: 173–180.CrossRefGoogle Scholar
  83. Petit, A., Y. Dessaux and J. Tempe. 1978. The biological significance of opines: I. A study of opine catabolism by Agrobacterium tumefaciens. In: Proc. 4th Intern. Conf. Plant Pathol. Bacteria, Angers. p 143.Google Scholar
  84. Pilet, P. E. 1960. Auxin content and auxin catabolism of the stems of Euphorbia cyparissias L. infected by Uromyces pisi (Pers.). Phytopathology., 40: 75–90.CrossRefGoogle Scholar
  85. Purohit, S. D., K. G. Ramawat and H. C. Arya 1979a. Phenolics, peroxidase and phenolase as related to gall formation in some arid zone plants. Curr. Sci, 48: 714–716.Google Scholar
  86. Purohit, S. D., N. S. Shekhawat, K. G. Ramawat and H. C. Arya 1979b. Role of some oxidative enzymes and metabolites in Sesamum phyllody. Ind. J. Exptl. Biol, 17: 714–716.Google Scholar
  87. Purohit, S. D., N. S. Shekhawat, P. Tandon and H. C. Arya 1980. Hormonal profiles in some insect and mite-induced plant galls. Proc. Indian Natn. Sci. Acad, B46: 892–900.Google Scholar
  88. Raa, J. 1971. Indole-3-acetic acid levels and the role of indole-3-acetic acid oxidase in the normal root and club-root of cabbage. Physiol. Plant, 25: 130–134.CrossRefGoogle Scholar
  89. Ramawat, K. G., S. D. Purohit and H. C. Arya 1979. Altered state of oxidising enzymes and phenolics in Cordia gall. Trans. Isdt. & Ucds, 4: 38–41.Google Scholar
  90. Rausch, T., D. N. Butcher and W. Hilgenberg 198I. Nitrilase activity in clubroot diseased plants. Physiol. Plant, 52: 467–470.Google Scholar
  91. Reddy, D. V. R. 1977. Techniques of invertebrate tissue culture for the study of plant viruses. Methods Virol, 6: 393–434.Google Scholar
  92. Reddy, M. N. and P. H. Williams 1970. Cytokinin activity in Plasmodiophora brassicae-infected cabbage tissue cultures. Phytopathology, 60: 1463–1465.CrossRefGoogle Scholar
  93. Rohfritsch, O. 1971a. Dévelopment cecidien et role du parasite dans quelques galles d arthopodes. Marcellia, 37: 233–339.Google Scholar
  94. Rohfritsch. O. 1971b. Culture in vitro de jeunes galles d Anlax glechomae L. sur Glechoma hederacea L. Marcellia, 37: 151–161.Google Scholar
  95. Rohfritsch, O. and J. D. Shorthouse 1982. Insect galls. In: Molecular Biology of Plant Tumors. G. Kahl and J. S. Schell (eds.) Academic Press, New York. pp 131–152.Google Scholar
  96. Roussaux, J. 1965. Etude preliminaire des modifications induites chez le pois express Alaska par le Corynebacterium fascians (Tilford) dowson. Rev. Gen. Botan, 72: 21–53.Google Scholar
  97. Rowan, S. J. 1970. Fusiform rust gall formation and cytokinin of Loblolly Pine. Phytopathology, 60: 1125–1226.Google Scholar
  98. Sachs, T. and K. V. Thimann 1964. Release of lateral buds from apical dominance. Nature, 201: 939–940.CrossRefGoogle Scholar
  99. Sandstedt, R. and M. L. Schuster 1966a. Excised tobacco pith bioassay for root-knot nematode-produced plant growth substances. Physiol Plantarum, 19: 99–104.CrossRefGoogle Scholar
  100. Sandstedt, R. and M. L. Schuster 1966b. The role of auxins in root-knot nematode-induced growth on excised tobacco stem segments. Physiol Plantarum, 19: 960–967.CrossRefGoogle Scholar
  101. Scarbrough, E., D. J. Armstrong, F. Skoog, C. R. Frihart and N. J. Leonard 1973. Isolation of cis-zeatin from Corynebacterium fascians cultures. Proc. Nat. Acad. Sci. USA, 70: 3825–3829.PubMedCrossRefGoogle Scholar
  102. Schaeffer, G. W. and H. H. Smith. 1963. Auxin-kinetin interaction in tissue culture of Nicotiana species and tumor conditioned hybrids. Plant Physiol, 38: 291–297.PubMedCrossRefGoogle Scholar
  103. Schell, J., M. Montagu, M. Beuckeleer, M. Block, A. Depicker, M. Wilde, G. Engler, C. Genetello, J. P. Hernalsteens, M. Holsters, J. Seurinck, A. Silva, F. Vliet and R. Villarroel 1979. Interactions and DNA transfer between Agrobacterium tumefaciens, the Ti plasmid and the plant host. Proc. R. Soc. London Ser. B 204: 251–266.CrossRefGoogle Scholar
  104. Scott, I. M., G. Browning and J. Eagles 1980. Ribosylzeatin and zeatin in tobacco crown-gall tumor tissue. Planta, 147: 269–273.CrossRefGoogle Scholar
  105. Scott, K. J. 1972. Obligate parasitism by phytopathogenic fungi. Biol. Rev, 47: 537–572.CrossRefGoogle Scholar
  106. Sequeira, L. 1963. Growth regulators in plant diseases. Ann. Rev. Phytopathol, 1: 5–30.CrossRefGoogle Scholar
  107. Sequeira, L. 1973. Hormone metabolism in diseased plants. Ann. Rev. Plant Physiol, 24: 353–380.CrossRefGoogle Scholar
  108. Shaw, M. 1963. The physiology and host parasite relations of the rusts. Ann. Rev. Phytopathol, 1: 259–294.CrossRefGoogle Scholar
  109. Shekhawat, N. S. and H. C. Arya 1979. Biochemical changes in green-ear of pearl-millet caused by Sclerospora graminicola (Sacc.). Schroet. Indian J. Exptl. Biol 17: 228–230.Google Scholar
  110. Shekhawat, N. S., H. C. Jain and H. C. Arya 1980. Accumulation of aromatic aminoacids, the precursors of auxin and phenols in pearl-millet infected with Sclerospora graminicola. Comp. Physiol. Ecol, 5: 39–42.Google Scholar
  111. Shekhawat, N. S., K. G. Ramawat and H. C. Arya 1978. Carbohydrate, protein, phenols and enzymes (PPO, PRO and IAA-Oxidase) in gall and normal tissues of Achyranthes aspera L. Curr. Sci, 47: 780–781.Google Scholar
  112. Smith, H. H. 1972. Plant genetic tumors. Progr. Exptl. Tumor Research, 15: 138–164.Google Scholar
  113. Srivastava, B. I. S. and M. Shaw 1962. The biosynthesis of indoleacetic acid in Melampsora line (Pers.). Lev. Can. J. Bot, 40: 309–315.CrossRefGoogle Scholar
  114. Streissle, G. 1971. The persistence of virus in wound tumor cultures. In: Les Cultures de Tissus de Plantes. Colloques Internationaux du CRNS, 193, Paris. pp 499–501.Google Scholar
  115. Swingle, C. F. 1925. Burr-knot of apple trees. Its relation to ctown- gall and to vegetative propagation. J. Heredity, 16: 313–320.Google Scholar
  116. Tandon, P. and H. C. Arya 1979. Effect of growth regulators on carbohydrate metabolism of Zizyphus jujuba gall and normal stem tissues in culture. Biochem. Physiol.Pflanzen, 174: 772–779.Google Scholar
  117. Tandon, P. and H. C. Arya 1980a. Auxin autotrophy and hyperauxinity of Eriophyes induced Zizyphus stem galls in culture. Biochem. Physiol. Pflanzen, 175: 537–541.Google Scholar
  118. Tandon, P. and H. C. Arya 1980b. Presence of auxin protectors in Eriophyes induced Zizyphus stem galls. Expeientia, 36: 958–959.CrossRefGoogle Scholar
  119. Tandon, P. and H. C. Arya 1980c. Separation of auxin protectors from Zizyphus gall tissue by Sephadex gel filtration. Curr. Sci., 49: 864–865.Google Scholar
  120. Tandon, P. and H. C. Arya 1982. Association of auxin protectors, peroxidase, indoleacetic acid oxidase and polyphenol oxidase in Zizyphus gall and normal stem tissues grown in culture. Biochem. Physiol. Pflanzen, 177: 114–124.Google Scholar
  121. Tandon, P.,G. S. Vyas and H. C. Arya 1976. Mechanism of in vitro gall induction in Zizyphuslujuba Lank. Experientia, 32: 563–564.CrossRefGoogle Scholar
  122. Tandon, P. and S. C. Joshi 1983. Studies on some oxidative enzymes and their isozymes in Cinnomomwn leaf gall development. In: Advancing Frontiers of Plant Sciences. H. C. Arya, N. Sankhla, M. N. Tewari, N. S. Skhewat and S. D. Purahit (eds). Jodhpur University Press, Jodhpur, India. pp 232–233.Google Scholar
  123. Tewari, M. M. and H. C. Arya 1969. Sclerospora graminicola axenic culture. Science, 163: 291–293.CrossRefGoogle Scholar
  124. Thrower, L. B. 1965. Host physiology and obligate fungal parasites. Phytopathol. Z, 52: 319–334.CrossRefGoogle Scholar
  125. Tso, T. C., L. G. Burk, L. J. Dieterman and S. H. Wender 1964. Scopoletin, scopolin and chlorogenic acid in tumours of interspecific Nicotiana hybrids. Nature (Lond.), 204: 779–780.CrossRefGoogle Scholar
  126. Larebeke, N., C. Genetello, J. Schell, R. A. Schilperoort, A. K. Hermans, J. P. Hernalsteens and M. Montagu 1975. Aquisition of tumor inducing ability by non-ocogenic agrobacteria as a result of plasmid transfer. Nature, 255: 742–743.PubMedCrossRefGoogle Scholar
  127. Valleau, W. D. 1954. Ky. Agr. Exp. Sta. Cir,522.Google Scholar
  128. Varghese, T. M. and K. Kumari 1970. Meristem induction in Solanum melongena roots by Meloidogyne incognita var. acrita. Nematologia, 16: 457.CrossRefGoogle Scholar
  129. Viglierchio, D. R. and P. K. Yu 1968. Plant growth substances in plant parasitic nematodes II. Host influence on auxin content. Exp. Parasitol, 23: 88–95.PubMedCrossRefGoogle Scholar
  130. Walkinshaw, C. H., F. F. Jewell and N. M. Walker 1965. Callus culture of fusiform rust-infected slash pine.Plant Disease Reptr, 49: 616–618.Google Scholar
  131. Watson, B., T. C. Currier, M. P. Gordon, M. D. Chilton and E. W. Nester 1975. Plasmid required for virulence of Agrobacterium tumefaciens. J. Bacteriol, 123: 255–264.Google Scholar
  132. Weiler, E. W. and K. Spanier 1981. Phytohormones in the formation of crown-gall tumors. Planta 153: 326–337.CrossRefGoogle Scholar
  133. Willmitzer, L., M. Beucheleev, M. Lemmers, M. Montagu and J. Schell 1980. DNA from Ti plasmid present in nucleus and absent from plastids of crown-gall plant cells. Nature, 287: 359–361.CrossRefGoogle Scholar
  134. Yadav, N. S., K. Postle, R. K. Saiki, M. F. Thomashow and M. D. Chilton 1980. T-DNA of a crown-gall teratoma is covalently joined to host plant DNA. Nature, 287: 1273–1277.CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht and Agro Botanical Publishers (India). 1987

Authors and Affiliations

There are no affiliations available

Personalised recommendations