Skip to main content

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 21))

  • 121 Accesses

Abstract

As soon as the first workers realized the importance of auxin in plant growth, they began to consider possible mechanisms of action. In fact, chapter 8 in the classic book, Phytohormones, is entitled “The Mechanism of Action;” as early as 1930 workers in the field were describing auxin-increased elasticity and plasticity of the cell wall (Went and Thimann, 1937). This review will cover five major experiments which have occurred since 1964. These noteworthy experiments have had measurable effects on the direction research has taken in this field in recent years, and on the evolution of our understanding of the mechanism of action of auxin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Ashburnner, M., and J. J. Bonner. 1979. The induction of gene activity in Drosophila by heat shock. Cell, 17: 241–254.

    Article  Google Scholar 

  • Bevan, M., and D. H. Northcote. 1981. Some rapid effects of synthetic auxin on mRNA levels in cultured plant cells. Planta, 152: 32–35.

    Article  CAS  Google Scholar 

  • Bonner, J. 1934. The relation of hydrogen ions to the growth rate of Avena coleoptile. Protoplasma, 21: 406–423.

    Article  CAS  Google Scholar 

  • Brummer, B., I. Potrykus and R. W. Parish. 1984. The roles of cell-wall acidification and proton-pump stimulation in auxin-induced growth studies using monensin. Planta, 162: 345–352.

    Article  CAS  Google Scholar 

  • Cleland, R. E. 1973. Auxin-induced hydrogen ion secretion from Avena coleoptiles. Proc. Nat. Acad. Sci. USA., 70: 3092–3093.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, R. E. 1980. Auxin and H+-excretion: the state of our knowledge. In: Plant Growth Substances 1979, F. Skoog (ed.), Springer Verlag, New York, NY USA, pp., 71–78.

    Chapter  Google Scholar 

  • Cooper, J. R., and J. E. Varner. 1984. Cross-linking of soluble extensin in isolated cell walls. Plant Physiol., 76: 414–417.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M. L., and P. M. Ray. 1969. Timing of the auxin response in coleoptiles and its implications regarding auxin action. Gen. Physiol., 53: 1–20.

    Article  CAS  Google Scholar 

  • Jones, A. M., and L. N. Vanderhoef. 1981. Effect of abrading the cuticle using emery. J. Exptl. Bot., 32: 405–410.

    Article  Google Scholar 

  • Kazama, H., and M. Katzumi. 1976. Biphasic response of cucumber hypocotyl sections to auxin. Plant Cell Physiol., 17: 467–473.

    CAS  Google Scholar 

  • Key, J. L. 1969. Hormones and nucleic acid metabolism. Annu. Rev. Plant Physiol., 20: 449–474.

    Article  CAS  Google Scholar 

  • Key, J. L. and J. Ingle. 1964. Requirement for the synthesis of DNA-like RNA for growth of excised plant tissue. Proc. Nat. Acad. Sci. USA., 52: 1382–1388.

    Article  PubMed  CAS  Google Scholar 

  • Köhler, K. 1956. Uber die beziehugen zwischen der lange von haferkoleoptilen undd wachstums-geschwindigkeit ihrer isolierten ausschnitte. Planta, 47: 159–164.

    Article  Google Scholar 

  • Ray, P. M. 1974. The biochemistry of the action of indoleacetic acid on plant growth. Recent Adv. Phytochem., 7: 93–123.

    CAS  Google Scholar 

  • Ray, P. M., and A. W. Ruesink. 1962. Kinetic experiments on the nature of the growth mechanism in oat coleoptile cells. Dev. Biol., 4: 377–397.

    Article  CAS  Google Scholar 

  • Rayle, D. L. 1973. Auxin-induced hydrogen ion secretion Avena coleoptiles and its implications. Planta, 114: 68–73.

    Article  Google Scholar 

  • Ringold, G. M., K. R. Yamamoto, J. M. Bishop, and H. E. Varmus. 1977. Glucocorticoid-stimulated accumulation of mouse mammary tumor virus RNA: Increased rate of synthesis of viral RNA. Nat. Acad. Sci. USA., 74: 2879–2883.

    Article  CAS  Google Scholar 

  • Sakurai, N., D. Nevins, and Y. Masuda. 1977. Auxin and hydrogen ion-induced cell wall loosening and cell extension in Avena coleoptile segments. Plant Cell Physiol., 18: 371–379.

    CAS  Google Scholar 

  • Terry, M. E., and R. L. Jones. 1981. Effect of salt on auxin-induced acidification and growth by pea internode sections. Plant Physiol., 68: 59–64.

    Article  PubMed  CAS  Google Scholar 

  • Theologis, A., and P. M. Ray. 1982. Early auxin-regulated polyadenylated mRNA sequences in pea stem tissue. Proc. Nat. Acad. Sci. USA., 79: 418–421.

    Article  PubMed  CAS  Google Scholar 

  • Vanderhoef, L. N. 1980. Auxin-regulated elongation: A summary hypothesis. In: Plant Growth Substances 1979, F. Skoog (ed.) Springer Verlag, New York, NY USA. pp. 90–96.

    Chapter  Google Scholar 

  • Vanderhoef, L. N., and T. Kosuge. 1984. Workshop Summary II. The molecular biology of plant hormone action: Research directions for the future. American Society of Plant Physiology. Waverly Press, Baltimore, MD, USA.

    Google Scholar 

  • Vanderhoef, L. N., and C. A. Stahl. 1975. Separation of two responses to auxin by means of cytokinin inhibition. Proc. Nat. Acad. Sci. USA., 72: 1822–1825.

    Article  PubMed  CAS  Google Scholar 

  • Walker, J. C., and J. L. Key. 1982. Isolation of cloned cDNAs to auxin-responsive poly (A) RNAs of elongating soybean hypocotyl. Proc. Nat. Acad. Sci. USA., 79: 7185–7189.

    Article  PubMed  CAS  Google Scholar 

  • Went, F. W., and K. V. Thimann. 1935. The mechanism of action. In: The Phytohormones, The MacMillan Co., New York, NY, USA., pp. 118–140.

    Google Scholar 

  • Yamaki, T. 1954. Effect of indoleacetic acid upon oxygen uptake, carbon dioxide fixation and elongation of Avena coleoptile cylinders in the darkness. Sci. Pap. Coli. Gen. Educ. Univ. Tokyo, 4: 129–154.

    Google Scholar 

  • Zurfluh, L. L., and T. J. Guilfoyle. 1982a. Auxin-induced changes in the population of translatable messenger RNA in elongation sections of soybean hypocotyl. Plant Physiol., 69: 332–337.

    Article  PubMed  CAS  Google Scholar 

  • Zurfluh, L. L., and T. J. Guilfoyle. 1982b. Auxin-induced changes in the population of translatable messenger RNA in elongating maize coleoptile sections. Planta, 156: 525–527.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht and Agro Botanical Publishers (India).

About this chapter

Cite this chapter

Vanderhoef, L.N. (1987). Auxin-Enhanced Elongation. In: Purohit, S.S. (eds) Hormonal Regulation of Plant Growth and Development. Advances in Agricultural Biotechnology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3950-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3950-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3952-4

  • Online ISBN: 978-94-015-3950-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics