The Chloroindole Auxins of Pea and Related Species

Part of the Advances in Agricultural Biotechnology book series (AABI, volume 21)


The chloroindole auxins of Pisum, Vicia, Lathyrus and Lens species are the strongest natural auxins known. 4-Chloroindole -3-acetic acid is an order of magnitude stronger than IAA. The chloroindole auxins occur in immature seeds to above 10 mg per kg. They are also found in vegetative parts. Five compounds: 4-chloroindole-3-acetic acid (CIIAA), its methyl ester (CRAM), an aspartate derivative, and two chlorotryptophan derivatives have been found in pea, Pisum sativum L.


Pisum Sativum Mung Bean Indoleacetic Acid Immature Seed Avena Coleoptile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Abe, H. and S. Marumo. 1974. Mass spectra of indoleacetic acid and its chloroderivatives. Agr. Biol. Chem., 38: 1537–1538.CrossRefGoogle Scholar
  2. Ahmad, A., A. S. Andersen and K. C. Engvild. 1985. Pea cuttings, chloroindole auxins and ethylene. Physiol. Plant., Suppl. XX: X XX.Google Scholar
  3. Blakesley, D., J. F. Hall, G. D. Weston and M. C. Elliot. 1983. Simultaneous analysis of indole-3-acetic acid and detection of 4-chloroindole-3-acetic acid and 5-hydroxyindole-3-acetic acid in plant tissues by high-performance liquid chromatography of their 2-methylindolo-oc-pyrone derivatives. J. Chromatography, 258: 155–164.CrossRefGoogle Scholar
  4. Block, A. McB and R. G. Clements. 1975. Structure-activity correlations for phenoxyacetic acids and indoleacetic acids used for plant growth regulation. Int. J. Quantum Chem: Quantum Biology Symp. No. 2: 197–202.Google Scholar
  5. Böttger, M., K. C. Engvild and P. Kaiser. 1978. Response of substituted indoleacetic acids in the indolo-oc-pyrone fluorescence determination. Physiol. Plant., 43: 62–64.CrossRefGoogle Scholar
  6. Böttger, M., K. C. Engvild and H. Soll. 1978. Growth of Avena coleoptiles and pH drop of protoplast suspensions induced by chlorinated indoleacetic acids. Planta, 140: 89–92.CrossRefGoogle Scholar
  7. Cocordano, M., F. D’Amato et J. J. Turcat. 1970. Relations entre la structure electronique et l’activité auxinique de dérivés chlorés de l’acide-ß-indolylacétique. Ann. Fac. Sci. Marseille, 43A: 63–90.Google Scholar
  8. Eeuwens, C. J. and W. W. Schwabe. 1975. Seed and pod wall development in Pisum sativum L. in relation to extracted and applied hormones. J. Exp. Bot., 26 (90): 1–14.Google Scholar
  9. Ehmann, A. 1977. The Van Urk-Salkowski reagent–a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J. Chromatography, 132: 267–276.CrossRefGoogle Scholar
  10. Engvild, K. C. 1974. Chloroindolyl-3-acetic acid and its methyl ester. Incorporation of 88C1 in immature seeds of pea and barley. Physiol. Plant., 32: 84–88.CrossRefGoogle Scholar
  11. Engvild, K. C. 1975. Natural chlorinated auxins labelled with radioactive chloride in immature seeds. Physiol. Plant., 34: 286–287.CrossRefGoogle Scholar
  12. Engvild, K. C. 1977. Preparation of chlorinated 3-indolylacetic acids. Acta. Chem. Scand., B31: 338–339.CrossRefGoogle Scholar
  13. Engvild, K. C. 1978. Substituted indoleacetic acids tested in tissue cultures. Physiol. Plant., 44: 345–346.CrossRefGoogle Scholar
  14. Engvild, K. C. 1980. Simple identification of the neutral chlorinated auxin in pea by thin layer chromatography. Physiol. Plant., 48: 435. 437.Google Scholar
  15. Engvild, K. C., H. Egsgaard and E. Larsen. 1978. Gas chromatographic-mass spectrometric identification of 4-chloroindolyl-3-acetic acid methyl ester in immature green peas. Physiol. Plant. 42: 365–368.CrossRefGoogle Scholar
  16. Engvild, K. C., H. Egsgaard and E. Larsen. 1980. Determination of 4-chloroindole-3-acetic acid methyl ester in Lathyrus, Vicia and Pisum by gas chromatography-mass spectrometry. Physiol. Plant., 48: 499–503CrossRefGoogle Scholar
  17. Engvild, K. C., H. Egsgaard and E. Larsen. 1981. Determination of 4-chloroindoleacetic acid methyl ester in Vicieae species by gas chromatography-mass spectrometry. Physiol. Plant., 53: 79–81.CrossRefGoogle Scholar
  18. Fox, S. W. and M. W. Bullock. 1951. Synthesis of indole-3-acetic acids and 2-carboxyindole-3-acetic acids with substituents in the benzene ring. J. Am. Chem. Soc., 73: 2756–2759.CrossRefGoogle Scholar
  19. Gandar, J. C. 1960. Evolution des substances de croissance de la graine et de la gousse du pois au cours de leur developpement. Ann. Inst. Natl. Rech. Agron., Ser. A 2: 255–260.Google Scholar
  20. Gandar, J. C. and J. P. Nitsch. 1964. Extraction d’une substance de croissance a partir des jeunes graines de Pisum sativum. In: Régulateurs Naturels de la Croissance Végétale. J. P. Nitsch (Ed.). CNRS 123: 169–178.Google Scholar
  21. Gandar, J. C. et C. Nitsch. 1967. Isolement de l’ester méthylique d’un acide chloro-3-indolylacétique â partir de graines immatures de pois, Pisum sativum L. C. R. Acad. Sci. (Paris) Sér D. 265: 1795–1798.Google Scholar
  22. Hansch, C. and J. C. Godfrey. 1951. The synthesis of 4-chloro-3indoleacetic acid. J. Am. Chem. Soc., 73: 3518.CrossRefGoogle Scholar
  23. Hansen, B. A. M. 1954. A physiological classification of “shoot auxins” and “root auxins” I. Botaniskâ Noliser. 3: 230–268.Google Scholar
  24. Hattori, H. and S. Marumo. 1972. Monomethyl-4-chloroindolyl-3acetyl-L-aspartate and absence of indolyl-3-acetic acid in immature seeds of Pisum sativum. Planta., 102: 85–90.Google Scholar
  25. Heikes, D. L. 1980. Mass spectral identification and gas liquid chromatographic determination of methyl 4-chloroindolyl-3-acetate in canned and frozen peas. J. Assoc. Off. Anal. Chem.. 63: 1224–1225.PubMedGoogle Scholar
  26. Hoffmann, O. L., S. W. Fox and M. W. Bullock. 1952. Auxin activity of systematically substituted indoleacetic acid. J. Biol. Chem., 196: 437–441.PubMedGoogle Scholar
  27. Hofinger, M. and M. Böttger. 1979. Identification by GC-MS of 4-chloroindolylacetic acid and its methyl ester in immature Vicia faba seeds. Phytochemistry, 18: 653–654.CrossRefGoogle Scholar
  28. Iino, M., R. S. -T. Yu and D. J. Carr. 1980. Improved procedure for the estimation of nanogram quantities of indole-3-acetic acid in plant extracts using the indolo-pyrone fluorescence method. Plant Physiol., 66: 1099–1105.PubMedCrossRefGoogle Scholar
  29. Katekar, G. F. and A. E. Geissler. 1982. Auxins II: The effect of chlorinated indolylacetic acids on pea stems. Phytochemistry 21: 257–260.CrossRefGoogle Scholar
  30. Katekar, G. F. and A. E. Geissler. 1983. Structure-activity differences between indoleacetic acid auxins on pea and wheat. Phytochemistry 22: 27–31.CrossRefGoogle Scholar
  31. Marumo, S., H. Abe, H. Hattori and K. Munakata. 1968. Isolation of a novel auxin, methyl 4-chloroindoleacetate from immature seeds of Pisum sativum. Agr. Biol. Chem., 32: 117–118.CrossRefGoogle Scholar
  32. Marumo, S. and H. Hattori. 1970. Isolation of D-4-chlorotryptophane derivatives as auxin-related metabolites from immature seeds of Pisum sativum. Planta, 90: 208–211.Google Scholar
  33. Marumo, S., H. Hattori and H. Abe. 1971. Chromatography of a new natural auxin, 4-chloroindolyl-3-acetic acid and related chloro derivatives. Anal. Biochern., 40: 488–490.CrossRefGoogle Scholar
  34. Marumo, S., H. Hattori, H. Abe and K. Munakata. 1968. Isolation of 4-chloroindolyl-3-acetic acid from immature seeds of Pisum sativum. Nature, 219: 959–960.CrossRefGoogle Scholar
  35. Marumo, S., H. Hattori and A. Yamamoto. 1974. Biological activity of 4-chloroindolyl-3-acetic acid. In: Plant Growth Substances 1973, Hirokawa Publ. Comp., Tokyo. pp. 419. 428.Google Scholar
  36. Muir. R. M. and C. Hansch. 1953. On the mechanism of action of growth regulators. Plant Physiol. 28: 218–232.PubMedCrossRefGoogle Scholar
  37. Nitsch, J. P. 1960. La chromatographie double a’une dimension et son emploi â la separation des substances de croissance. Bull. Soc. Bot. France, 107: 247–260.Google Scholar
  38. Pless, T., M. Böttger. P. Hedden and J. Graebe. 1984. Occurrence of 4–0-indoleacetic acid in broad beans and correlation of its levels with seed development. Plant Physiol., 74: 320–323.PubMedCrossRefGoogle Scholar
  39. Porter, W. L. and K. V. Thimann. 1965. Molecular requirements for auxin action. I. Halogenated indoles and indoleacetic acid. Phytochemistry 4: 229–243.CrossRefGoogle Scholar
  40. Sandberg, G., B. Andersson and A. Dunberg. 1981. Identification of 3-indoleacetic acid in Pinus sylvestris L. by gas chromatography-mass spectrometry, and quantitative analysis by ion-pair reversed-phase liquid chromatography with spectrofluorimetric detection. J. Chromatography, 205: 125–137.CrossRefGoogle Scholar
  41. Sell, H. M., S. H. Wittwer, T. L. Rebstock and C. T. Redemann. 1952. Comparative stimulation of parthenocarpy in the tomato by various indole compounds. Plant Physiol., 28: 481–487.CrossRefGoogle Scholar
  42. Sjut, V. 1981. Reversed-phase high-performance liquid chromatography of substituted indoleacetic acids. J. Chromatography, 209: 107–109CrossRefGoogle Scholar
  43. Weiler, E. W. 1982. Plant hormone immunoassay. Physiol. Plant., 54: 230–234.CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht and Agro Botanical Publishers (India). 1987

Authors and Affiliations

There are no affiliations available

Personalised recommendations