Advertisement

Hormonal Regulation of Leaf Growth and Senescence in Relation to Stomatal Movements

Chapter
Part of the Advances in Agricultural Biotechnology book series (AABI, volume 21)

Abstract

Increase of leaf growth and delay of leaf senescence are very important problems in plant physiology because plant productivity depends to a high degree on the leaf area and leaf longevity. Although regulation of leaf growth has long attracted scientists, the mechanism of this process is not well understood even at present. There are many more data and ideas now in the field of leaf senescence regulation (also see review by B. Sabater in Volume I of this series). This field of investigation was strongly influenced by the progress made in studies on hormone and light actions in plants. In the present paper, I will deal in particular with the hormonal regulation of growth and senescence of leaves.

Keywords

Leaf Disc Gibberellic Acid Guard Cell Leaf Senescence Leaf Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ahorni, N., J. D. Anderson, and M. Lieberman. 1979. Production and action of ethylene in senescencing leaf discs. Effect of indoleacetic acid, kinetin, silver ion and carbon dioxide. Plant Physiol., 64: 805–809.CrossRefGoogle Scholar
  2. Avery, Jr., G. S. 1935. Differential distribution of phytohormone in the developing leaf of Nicotiana, and its relation to polarized growth. Bull. Torr. Bot. Club, 62: 313–330.CrossRefGoogle Scholar
  3. Beevers, L. 1966. Effect of giberellic acid on the senescence of leaf discs of Nasturtium (Tropaeolum majus). Plant Physiol., 41: 1074–1076.PubMedGoogle Scholar
  4. Beevers, L., and F. S. Guernsey. 1967. Interaction of growth regulators in the senescence of Nasturtium leaf disks. Nature (Lond.), 214: 941–942.CrossRefGoogle Scholar
  5. Biswal, U. C., and Sharmer, R. 1976. Phytochrome regulation of senescence in detached barley leaves. Zeitschr. Pflanzenphysiol., 80: 71–73.Google Scholar
  6. Biswal, U. C., R. Bergfeld, and H. Kasemir 1983. Phytochrome-mediated delay of plastid senescence in mustard cotyledones: changes in pigment contents and ultrastructure. Planta, 151: 135–140.Google Scholar
  7. Bonner, D. M., A. J. Haagen-Smit, and F. W. Went 1939. Leaf growth hormones. I. A bioassay and source for leaf growth factors. Bot. Gaz., 101: 128–144.CrossRefGoogle Scholar
  8. Bonner, D. M., and A. J. Haagen-Smit 1939. Leaf growth factors. II. The activity of pure substances in leaf growth. Proc. Nat. Acad. Sci. USA, 25: 184–188.PubMedCrossRefGoogle Scholar
  9. Choe, H. T. and K. V. Thimann. 1975. The metabolism of oat leaves during senescence. III. The senescence of isolated chloroplasts. Plant Physiol., 55: 828–834.PubMedCrossRefGoogle Scholar
  10. Coulombe, L. J. and R. Paquin. 1959. Effects de l’acide gibberellique sur le metabolism des plantes. Can. J. Bot., 37: 897–901.CrossRefGoogle Scholar
  11. Dale, J. E. and G. M. Fellppe. 1977. Nitrogen movement into and out of the first leaf of barley. Zeitschr. Pflanzenphysiol., 84: 27–53.Google Scholar
  12. Dale, J. E. and D. Murray. 1968. Photomorphogenesis and early growth of primary leaves of Phaseolus vulgaris. Ann. Bot., 32: 767–780.Google Scholar
  13. Dale, J. E. and D. Murray. 1969. Light and cell division in primary leaves of Phaseolus. Proc. Roy. Soc. Lond., B 173: 541–555.Google Scholar
  14. Dhindsa, R. S., P. L. Plumb-Dhindsa and D. M. Reid. 1982. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol. Plant., 56: 453–457.CrossRefGoogle Scholar
  15. Dörfler, M. and H. Göring. 1978. Der Einfluss verschiedener Lichtqualität (Blau-und Rotlicht) auf den Cytokiningehalt von Kurbisjungpflanzen. Biol. Rundschau, 16: 186–188.Google Scholar
  16. Downs, R. J. 1955. Photoreversibility of leaf and hypocotyl elongation of dark-grown red kidney bean seedlings. Plant Physiol., 30: 468–472.PubMedCrossRefGoogle Scholar
  17. Evans, L. T. and W. G. Allaway. 1972. Action spectrum for the opening of Albizzia julibrissin pinnules and the role of phytochrome in the closing movements of pinnules and of stomata of Vicia faba. Austr. J. Biol. Sci., 25: 885–893.Google Scholar
  18. Fletcher, R. A. and D. J. Osborne. 1965. Regulation of protein and nucleic acid synthesis by gibberellin during leave senescence. Nature (Lond.), 207: 1176–1177.CrossRefGoogle Scholar
  19. Fletcher, R. A. and D. J. Osborne. 1969. Gibberellin as a regulatoe of protein and ribonucleic acid synthesis during senescence in leaf cells of Taraxacum officinale. Can. J. Bot., 44: 739–745.CrossRefGoogle Scholar
  20. Goldthwaite, J. J. and W. M. Laetsch. 1968. Control of senescencr in Rumex leaf discs by gibberellic acid. Plant Physiol., 43: 1855–1958.PubMedCrossRefGoogle Scholar
  21. Göring, H., S. Koshuchowa, H. Münnich and M. Dietrich. 1984. Stomatal opening and cell enlargement in response to light and phytohormone treatments in primary leaves of red-light-grown seedlings of Phaseolus vulgaris L. Plant Cell Physiol., 25: 683–690.Google Scholar
  22. Göring, H. and S. Koshuchowa. 1985. Influence of light and CO2 on senescence of detached leaves of C3 and C4 plants. Biochem. Physiol. Pflanzen, 180: 323–325.Google Scholar
  23. Haber, A. H., P. J. Thompson, P. L. Walne and L.L. Triplett. 1969. Non-photosynthetic retardation of chloroplast senescence by light. Plant Physiol., 44: 1619–1628.PubMedCrossRefGoogle Scholar
  24. Habermann, H. M. 1973. Evidence for two photoreactions and possible involvement of phytochrome in light-dependent stomatal opening. Plant Physiol., 51: 543–548.PubMedCrossRefGoogle Scholar
  25. Hewett, E. W. and P. F. Wareing. 1975. Cytokinins in Populus robusta (Schneid.) Light effects on endogenous levels. Planta, 114: 119–129.CrossRefGoogle Scholar
  26. Humble, G. D. and T. C. Hsiao. 1970. Light-dependent influx and efflux of potassium of guard cells during stomatal opening and closing. Plant Physiol., 46: 483–487.PubMedCrossRefGoogle Scholar
  27. Humphries, E. C. and A. W. Wheeler. 1960. The effect of kinetin, gibberellic acid and light on expansion and cell division in leaf discs of dwarf bean. J. Exp. Bot., 11: 81–85.CrossRefGoogle Scholar
  28. Jabben, M. and G. F. Deitzer. 1979. Effects of the herbiside San 9789 on photomorphogenetic responses. Plant Physiol., 63: 481–485.PubMedCrossRefGoogle Scholar
  29. Karlsson, P. E., H. O. Hiiglund and R. Klockare. 1983. Blue light induces stomatal transpiration in wheat seedlings with chlorophyll deficiency caused by San 9789. Plant Physiol., 57: 417–421.CrossRefGoogle Scholar
  30. Kasamo, K. 1976. The role of the epidermis in kinetin-induced retardation of chlorophyll degradation in tobacco leaves. Plant Cell Physiol., 17: 1297–1307.Google Scholar
  31. Köhler, K. -H., M Dörfler and H. Göring. 1980. The influence of light on the cytokinin content of Amaranthus seedlings. Biol Plant., 22: 128–134.CrossRefGoogle Scholar
  32. Koshuchowa, S. 1985. Influence of cytokinins, gibberellic acid, 2, 2dipyridyl and light on starch and potassium content in guard cells in relation to stomatal opening, Colloquia Pflanzenphysiol., Humboldt University Berlin, 9: 13–14Google Scholar
  33. Koshuchowa, S., D. Göring and H. Göring. 1986. Regulation of stomatal movement and leaf growth in dicotyledoneous plants by red and far-red light. Plant Cell Physiol.,in press.Google Scholar
  34. Kulaeva, O. N. and O. I. Devyatko. 1969. Delay of the yellowing of barley leaves on the plant by phytohormone treatment. Fiziol. rastenij, 16: 288–292.Google Scholar
  35. Kulaeva, O. N. and L. V. Tsibulya. 1974. Effect of cytokinin on growth of disks from etiolated bean leaves. Fiziol. rastenij, 21: 709–713.Google Scholar
  36. Kuraishi, S. 1976. Inffectiveness of cytokinin-induced chlorophyll retention in hypostomatous leaf discs. Plant Cell Physiol., 17: 875–885.Google Scholar
  37. Kuraishi, S. and Hashimoto. 1957. Promotion of leaf growth and accelaration of stem elongation by gibberellin. Bot. Mag., 70: 86–92.Google Scholar
  38. Kuraishi, S. and F. Okumura. 1956. The effect kinetin on leaf growth. Bot. Mag., 69: 300–306.Google Scholar
  39. Kursanov, A. L., O. N. Kulaeva and T. P. Mikulovich. 1969. Interaction of phytohormones and their effect on the growth of isolated pumpkin cotyledons. Fiziol. rastenij, 16: 680–686.Google Scholar
  40. Letham, D. S. 1969. Cytokinins and their relation to other phytohormones. Bioscience, 19: 309–316.CrossRefGoogle Scholar
  41. Liverman, J. A., M. P. Johnson and L. Starr. 1955. Reversible photoreaction controlling expansion of etiolated bean leaf discs. Science, 121: 440–441.PubMedCrossRefGoogle Scholar
  42. Livne, A. and Y. Vaadia. 1965. Stimulation of transpiration rate in barley leaves by kinetin and gibberellic acid. Physiol Plant, 18: 658–664.CrossRefGoogle Scholar
  43. Macrobbie, E. A. C. 1981. Ion fluxes in isolated guard cells of Commelina communis L. J. Exp. Bot., 32: 545–562.CrossRefGoogle Scholar
  44. Marré, E. 1979. Fusicoccin: A tool in plant physiology. Ann. Rev. Plant Physiol., 30 273–288.CrossRefGoogle Scholar
  45. Marré, E., R. Colombo, P. Lado and F. Rasi-Coldogno. 1974. Correlation between proton extrusion and stimulation of cell enlargement. Effects of fusicoccin and cytokinins on leaf fragments and isolated cotyledones. Plant Sci. Lett., 2: 139–150.CrossRefGoogle Scholar
  46. Meidner, H. and T. A. Mansfield. 1968. Physiology of Stomata. McGraw Hí11., New YorkGoogle Scholar
  47. Miller, C. O. 1956. Similarity of some kinetin and red light effects. Plant Physiol, 31: 318–319.PubMedCrossRefGoogle Scholar
  48. Neumann, P. M., A. T. Tucker and L. D. Noodén., 1983. Characterization of leaf senescence and pod development in soybean explants. Plant Physiol., 72: 182–185.PubMedCrossRefGoogle Scholar
  49. Outlaw, W. H., Jr. 1983. Current concepts on the role of potassium in stomatal movements. Physiol. Plant., 59: 302–311.CrossRefGoogle Scholar
  50. Parker, M. W., S. B. Hendricks, H. A. Borthwick and F. W. Went. 1949. Spectral activities for leaf and stem growth of etiolated pea seedlings and their similarity to action spectra for photoperiodism. Amer. J. Bot., 36: 194–204.CrossRefGoogle Scholar
  51. Powell, R. D. and M. M. Griffith. 1960. Some anatomical effects of kinetin and red light on disks of bean leaves. Plant Physiol., 35: 273–275.PubMedCrossRefGoogle Scholar
  52. Purohit, S. S. 1982. Prevention by Kinetin of Ethylene-induced Chlorophyllase activity in Senecing detached leaves of Helianthus annuus. Biochem Physiol. Pflanzen. 177: 625–627.Google Scholar
  53. Purohit, S. S. 1983. Environmental and hormonal regulation of stomatal movements. In: Aspects of Physiology and Biochemistry of Plant Hormones. S. S. Purohit (ed.). Kalyani Publishers, New Delhi Ludhiana, pp. 201–216Google Scholar
  54. Quadreago, M. and C. Hubac. 1982. Effect of far-red light on drought resistance of cotton. Plant Cell Physiol., 23: 1297–1303.Google Scholar
  55. Raschke, K. 1975. Stomatal action. Ann. Rev. Plant Physiol., 26: 309–340.CrossRefGoogle Scholar
  56. Richardson, S. D. 1957. The effect of leaf age on the rate of photosynthesis in detached leaves of tree seedlings. Acta Bot. Neerl., 6: 445–457.Google Scholar
  57. Roth-Bejerano, N. and C. Itai. 1981. Involvement of phytochrome in stomatal movement: Effects of blue and red light. Physiol. Plant., 52: 201–206.CrossRefGoogle Scholar
  58. Rustagi, P. N. and N. Sankhla. 1974. Effect of 3’-5’-cyclic adenosine monophosphate on stomatal opening in Vicia faba L. Zeitschr. Pflanzenphysiol.,73: 467–470.Google Scholar
  59. Sabater, B. 1984. Hormonal Regulation of Senescence. In: Hormonal Regulation of Plant Growth and Development Vol. I. S. S. Purohit (ed) Agro Botanical Publishers (India) Bikaner/Martinus Nijhoff/ Dr. W. Wunk Publishers, The Netherlands. 169–217.Google Scholar
  60. Satler, S. O. and K. V. Thimann. 1983. Metabolism of oat leaves during senescence. VII. The interaction of carbon dioxide and other atmospheric,gases with light in controlling chlorophyll loss and senescence. Plant Physiol., 71: 67–70.PubMedCrossRefGoogle Scholar
  61. Scott, R. A., Jr. and J. L. Liverman. 1956. Promotion of leaf expansion by kinetin and benzylaminopurine. Plant Physiol., 31: 321–322.CrossRefGoogle Scholar
  62. Sen, D. N., M. C. Bhandari and T. Mathur. 1972. Stomatal response of some arid zone plant species. Curr. Sci., 41: 553–557.Google Scholar
  63. Squire, G. R. and T. A. Mansfield. 1972. Studies of the mechanism of action of fusicoccin, the fungal toxin that induces wilting, and its interaction with abscisic acid. Planta, 105: 71–78.CrossRefGoogle Scholar
  64. Thimann, K. V. 1980. The senescence of leaves. In: Senescence in Plants. K. V. Thimann (ed.). CRC Press, Boca Raton, Florida. pp. 85–115.Google Scholar
  65. Thimann, K. V. 1985. The interaction of hormonal and environmental factors in leaf senescence. Biol. Plant., in press.Google Scholar
  66. Thimann, K. V. and S. O. Satler. 1979a. Relation between leaf senescence and stomatal closure: Senescence in light. Proc. Nat. Acad. Sci. USA, 76: 2995–2298.Google Scholar
  67. Thimann, K. V. and S. O. Sauer. 1979b. Relation between leaf senescence and stomatal closure: Senescence in darkness. Proc. Nat. Acad. Sci. USA., 76: 2770–2773.PubMedCrossRefGoogle Scholar
  68. Thimann, K. V., R. M. Tetly and B. M. Krivak. 1977. The metabolism of oat leaves during senescence. V. Senescence in light. Plant Physiol., 59: 448–454.PubMedCrossRefGoogle Scholar
  69. Thomas, H. and J. L. Stoddart. 1975. Separation of chlorophyll degradation from other senescence processes in leaves of a mutant genotype of medow fescue (Festuca pratensis L.). Plant Physiol., 56: 438–443.PubMedGoogle Scholar
  70. Tucker, D. J. 1981. Phytochrome regulation of leave senescence in cucumber and tomato. Plant Sci. Lett., 23: 103–108.CrossRefGoogle Scholar
  71. Turner, N. C. and A. Graniti. 1969. Fusicoccin: A fungal toxin that opens stomata. Nature (Lond.), 223: 1070–1071.CrossRefGoogle Scholar
  72. Turner, N. C. and Y. Masuda. 1975. Comparative studies on auxin and fusicoccin actions on plant growth. Plant Cell Physiol., 16: 41–52.Google Scholar
  73. Van Volkenburgh, E. and R. E. Cleland. 1979. Separation of cell enlargement and division in bean leaves. Planta, 146: 245–247CrossRefGoogle Scholar
  74. Van Volkenburgh, E. and Cleland. 1980. Proton excretion and cell expansion in bean leaves. Planta, 148: 273–278.CrossRefGoogle Scholar
  75. Van Volkenburgh, E. and R. E. Cleland. 1984. Control of leaf growth by changes in cell wall properties. What’s New in Plant Physiol., 15: 25–28.Google Scholar
  76. Vickery, H. B., G. W. Pucher, A. J. Wakemann and C. S. Leavenworth 1937. Chemical investigations of the tobacco plant. VI. Chemical changes that occur in leaves during culture in light and in darkness. Conn Agr. Exp. Sta. New Haven Bull., 399: 757–832.Google Scholar
  77. Wareing, P. F., M. M. Khalifa and K. J. Treharne. 1968. Rate-limiting processes in photosynthesis at saturating light intensities. Nature (Lond.), 220: 453–457.CrossRefGoogle Scholar
  78. Went, F. W. and K. V. Thimann. 1937. Phytohormones. The MacMillian Company, New York. p. 227.Google Scholar
  79. Whyte, P. and L. C. Luckwill. 1966. A sensitive bioassay for gibberellins based on retardation of leaf senescence in Rumex obtusifolius. Nature (Lond.), 210: 1360.CrossRefGoogle Scholar
  80. Zeiger, E. and C. Field. 1982. Photocontrol of the functional coupling between photosynthesis and stomatal conductance in the intact leaf. Plant Physiol., 70: 370–375.PubMedCrossRefGoogle Scholar
  81. Zeiger, E., C. Field and H. A. Mooney. 1981. Stomatal opening at dawn: Possible roles of the blue light response in nature. In: Plants and the Day light Spectrum. H. Smith (ed.). Academic Press, New York. pp. 391–407.Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht and Agro Botanical Publishers (India). 1987

Authors and Affiliations

There are no affiliations available

Personalised recommendations