Skip to main content

Large Systems under Neumann Boundary Conditions, Bifurcations

  • Chapter
Systems of Nonlinear Partial Differential Equations

Part of the book series: Mathematics and Its Applications ((MAIA,volume 49))

  • 339 Accesses

Abstract

In Sections 7.2 and 7.3, we will give a careful treatment of large parabolic systems of Volterra-Lotka prey-predator type under zero Neumann boundary condition. We follow the methods in [191], [192], [193] and [194], combining graph-theoretic technique with the use of Lyapunov functions. The earlier use of Lyapunov functions to study such reaction-diffusion systems began with [197], [229], [134], [190], and others. The recent results presented here give very general and elegant insight into the problem. Such systems had also been investigated by many others by invariant rectangles and comparison methods as indicated in the notes at the end of this chapter. Results using these other techniques had been summarized in other books, e.g. [211], [31], and are thus not included here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothe, F., ‘Global Solutions of Reaction-Diffusion Equations,’ Lecture Notes in Mathematics, vol. 1072, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  2. Leung, A., ‘Limiting behavior for a prey-predator model with crowding effects,’ J. Math. Biol., 6 (1978), 87–93.

    Article  MathSciNet  MATH  Google Scholar 

  3. Williams, S. and Chow, P. L., ‘Nonlinear reaction-diffusion models for interacting populations,’ J. Math. Anal. Appl., 62 (1978), 157–69.

    Article  MathSciNet  MATH  Google Scholar 

  4. Redheffer, R. and Zhou, Z. M., ‘Global asymptotic stability for a class of many-variable Volterra prey-predator systems,’ J. Nonlinear Anal., 5 (1981), 1309–1329.

    Article  MathSciNet  MATH  Google Scholar 

  5. Redheffer, R. and Zhou, Z. M., ‘A class of matrices connected with Volterra prey-predator equations,’ SIAM J. Alg. Discr. Meth., 3 (1982), 122–34.

    Article  MathSciNet  MATH  Google Scholar 

  6. Redheffer, R. and Walter, W., ‘On parabolic systems of Volterra predator-prey type,’ J. Nonlinear Analysis, 7 (1983), 333–47.

    Article  MathSciNet  MATH  Google Scholar 

  7. Redheffer, R. and Walter, W., ‘Solution of the stability problem for a class of generalized Volterra prey-predator systems,’ J. Diff. Eqs., 52 (1984), 245–263.

    Article  MathSciNet  MATH  Google Scholar 

  8. Redheffer, R. and Walter, W., ‘On parabolic systems of Volterra predator-prey type,’ J. Nonlinear Analysis, 7 (1983), 333–47.

    Article  MathSciNet  MATH  Google Scholar 

  9. McNabb, A., ‘Comparison and existence theorems for multicomponent diffusion systems,’ J. Math. Anal. Appl., 3 (1961), 133–44.

    Article  MathSciNet  MATH  Google Scholar 

  10. ] Cheuh, K. N., Conley, C. C. and Smoller, J. A., ‘Positively invariant regions for systems of nonlinear diffusion equations,’ Indiana Univ. Math. J., 26 (1977), 373–92.

    Google Scholar 

  11. Conway, E., Hoff, D. and Smoller, J., ‘Large time behavior of solutions of systems of nonlinear reaction-diffusion equations,’ SIAM J. Appl. Math., 35 (1978), 1–16.

    MathSciNet  MATH  Google Scholar 

  12. Rauch., J. and Smoller, J., ‘Qualitative theory of the FitzHugh-Nagumo equations,’ Adv. in Math., 27 (1978), 12–44.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lakshmikantham, V., ‘Some problems of reaction-diffusion equations,’ Applied Nonlinear Analysis, Academic Press, New York, 1979.

    Google Scholar 

  14. Chandra, J. and Davis, P. W., ‘Comparison theorems for systems of reaction-diffusion equations.’ Applied Nonlinear Analysis ( V. Lakshmikantham, ed), Academic Press, N. Y., (1979).

    Google Scholar 

  15. Pao, C. V., ‘Co-existence and stability of a competition-diffusion system in population dynamics,’ J. Math. Anal. Appl., 83 (1981), 54–76.

    Article  MathSciNet  MATH  Google Scholar 

  16. Pao, C. V., ‘On nonlinear reaction-diffusion systems,’ J. Math. Anal. Appl., 87 (1982), 165–98.

    Article  MathSciNet  MATH  Google Scholar 

  17. Fife, P. C. and Tang, M. M., ‘Comparison principles of reaction-diffusion systems: irregular comparison functions and applications to questions of stability and speed of propagation of disturbances,’ J. Diff. Eqs., 340 (1981), 168–85.

    Article  MathSciNet  Google Scholar 

  18. Zhou, L. and Pao, C. V., ‘Asymptotic behaviour of a competition-diffusion system in population dynamics,’ J. Nonlinear Analysis, 6 (1982), 1163–84.

    Article  MathSciNet  MATH  Google Scholar 

  19. Brown, P. N., ‘Decay to uniform states in ecological interactions,’ SIAM J. Appl. Math., 38 (1980), 22–37.

    MATH  Google Scholar 

  20. Brown, P. N., ‘Decay to uniform states in competitive systems,’ SIAM J. Math. Anal., 14 (1983), 659–73.

    MATH  Google Scholar 

  21. Brown, P. N., ‘Decay to uniform states in predator-prey chains,’ SIAM J. Appl. Math., 45 (1985), 465–78.

    MATH  Google Scholar 

  22. Lazer, A. and McKenna, J., ‘On steady state solutions of a system of reaction-solution equations from biology,’ J. Nonlinear Analysis, 6 (1982), 523–30.

    Article  MathSciNet  MATH  Google Scholar 

  23. Matano, H. and Mimura, M., ‘Pattern formation in competition-diffusion systems in nonconvex domains,’ Publ. RIMS, Kyoto Univ., 19 (1983), 1049–1079.

    Article  MathSciNet  MATH  Google Scholar 

  24. Blat, J. and Brown, K. J., ‘Bifurcation of steady-state solutions in prey-predator and competition systems,’ Proc. R. Soc. Edinburgh, Sect. A: Math., 97 (1984), 21–34.

    Article  MathSciNet  MATH  Google Scholar 

  25. Crandall, M. and Rabinowitz, P., ‘Bifurcation, perturbation of simple eigenvalues and linearized stability,’ Arch. Rat. Mech. Anal., 52, (1973), 161–181.

    Article  MathSciNet  MATH  Google Scholar 

  26. Rabinowitz, P. ‘Some global results for nonlinear eigenvalue problems,’ J. Funct. Anal., 1 (1971), 487–513.

    Article  MathSciNet  Google Scholar 

  27. Leung, A. and Clark, D., ‘Bifurcations and large-time asymptotic behavior for prey-predator reaction-diffusion equations with Dirichlet boundary data,’ J. Diff. Eqs., 35 (1980), 113–27.

    Article  MathSciNet  MATH  Google Scholar 

  28. Brown, K. J., ‘Spatially inhomogeneous steady state solutions for systems of equations describing interacting populations,’ J. Math. Anal. Appl., 95 (1983), 251–64.

    Article  MathSciNet  MATH  Google Scholar 

  29. Blat, J. and Brown, K. J., ‘Bifurcation of steady-state solutions in prey-predator and competition systems,’ Proc. R. Soc. Edinburgh, Sect. A: Math., 97 (1984), 21–34.

    Article  MathSciNet  MATH  Google Scholar 

  30. Blat. J. and Brown, K. J., ‘Global bifurcation of positive solutions in some systems of elliptic equations,’ SIAM J. Math. Anal., 17 (1986), 1339–1353.

    MathSciNet  MATH  Google Scholar 

  31. Li, L., ‘Coexistence theorems of steady states for predator-prey interacting systems,’ Trans. Amer. Math. Soc., 305 (1988), 143–166.

    Article  MathSciNet  MATH  Google Scholar 

  32. Chow, S. N. and Hale, J., Methods of Bifurcation Theory, Springer-Verlag, N. Y.,1982.

    Google Scholar 

  33. Smoller, J., Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leung, A.W. (1989). Large Systems under Neumann Boundary Conditions, Bifurcations. In: Systems of Nonlinear Partial Differential Equations. Mathematics and Its Applications, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-3937-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-3937-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-3939-5

  • Online ISBN: 978-94-015-3937-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics