Advertisement

Fluids and melting in the Archaean deep crust of southern India

  • Robert C. Newton
Chapter
Part of the The Mineralogical Society Series book series (MIBS, volume 2)

Abstract

A close relationship between granulite facies metamorphism and crustal melting has often been inferred in studies of Precambrian high-grade terrains. Quensel (1952) described granite-granulite associations in four continents, and Rama Rao (1940) called attention to the particularly close association of migmatites, granites, and granulites near the orthopyroxene isograd in southern India. The concept of dehydration melting in the generation of granulites has been the subject of much discussion (Phillips 1980, Waters 1988). The temperature-pressure range of granulite facies metamorphism (700–900 + °C, 4–10 kbar) embraces the region where many rocks would begin to melt if any water is present (Bohlen et al. 1983).

Keywords

Shear Zone Fluid Inclusion Lower Crust Invariant Point Dharwar Craton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, P., K. C. Condie & G. P. Bowling 1986. Geochemical characteristics and possible origins of the Closepet Batholith, South India. Journal of Geology 94, 283–99.CrossRefGoogle Scholar
  2. Baker, A. J. & A. E. Fallick 1988. Evidence for CO2 infiltration in granulite facies marbles from Lofoten-Vesteralen, Norway. Earth and Planetary Science Letters 91, 132–40.CrossRefGoogle Scholar
  3. Balasubrahmanyam, M. N. 1978. Geochronology and geochemistry of Archaean tonalitic gneisses and granites of South Kanara District, Karnataka State, India. In The origin and evolution of Archaean continental crust, B. F. Windley & S. M. Naqvi (eds), 59–77. Amsterdam: Elsevier.Google Scholar
  4. Baratov, R. B., N. A. Gnutenko & V. N. Kuzemko 1984. Regional carbonitization connected with the epi-Hercynian tectonogenesis in the southern Tien Shan. Doklady Akademii Nauk SSSR 274, 124–6.Google Scholar
  5. Beach, A. 1976. The interrelations of fluid transport, deformation, geochemistry and heat flow in early Proterozoic shear zones in the Lewisian complex. Philosophical Transactions of the Royal Society of London A280, 569–604.Google Scholar
  6. Berman, R. G. 1988. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology 29, 445–522.Google Scholar
  7. Bohlen, S. R., A. L. Boettcher, V. J. Wall & J. D. Clemens 1983. Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. Contributions to Mineralogy and Petrology 83, 270–7.CrossRefGoogle Scholar
  8. Burnham, C. W., J. R. Holloway & N. F. Davis 1969. Thermodynamic properties of water to 1,000°C and 10,000 bars. Geological Society of America, Special Paper 132.Google Scholar
  9. Burwash, R. A. & J. Krupička 1970. Cratonic reactivation in the Precambrian basement of western Canada. Part II: Metasomatism and isostasy. Canadian Journal of Earth Sciences 7, 1275–94.CrossRefGoogle Scholar
  10. Cameron, E. M. 1988. Archaean gold: relation to granulite formation and redox zoning in the crust. Geology 16, 109–12.CrossRefGoogle Scholar
  11. Chadwick, B., M. Ramakrishnan & M. N. Viswanatha 1981. The stratigraphy and structure of the Chitradurga Region: an illustration of cover-basement interaction in the late Archaean evolution of the Karnataka Craton, Southern India. Precambian Research 16, 31–54.CrossRefGoogle Scholar
  12. Clemens, J. D., S. Circone, A. Navrotsky & P. F. McMillan 1987. Phlogopite: high-temperature solution calorimetry, thermodynamic properties, Al-Si and stacking disorder, and phase equilibria. Geochimica et Cosmochimica Acta 51, 2569–78.CrossRefGoogle Scholar
  13. Devaraju, T. C. & M. S. Sadashivaiah 1969. The charnockites of Satnur-Halaguru area, Mysore State. Indian Mineralogist 10, 67–88.Google Scholar
  14. Divakara Rao, V., U. Aswathanarayana & M. N. Qureshy 1972. Trace element geochemistry of the Closepet Granite, Mysore State, India. Mineralogical Magazine 38, 678–86.CrossRefGoogle Scholar
  15. Drury, S. A. & R. W. Holt 1980. The tectonic framework of the South Indian Craton: a reconnaissance involving LANDSAT imagery. Tectonophyics 65, T1 – 15.CrossRefGoogle Scholar
  16. Eggler, D. H. & A. A. Kadik 1979. The system NaAlSi3O8-H2O-CO2 to 20 kbar pressure: I. Compositional and thermodynamic relations of liquids and vapors coexisting with albite. American Mineralogist 64, 1036–48.Google Scholar
  17. Friend, C. R. L. 1983. The link between charnockite formation and granite production: evidence from Kabbaldurga, Karnataka, Southern India. In Migmatites, melting and metamorphism, M. P. Atherton & C. D. Gribble (eds), 264–76. Nantwich, UK: Shiva.Google Scholar
  18. Friend, C. R. L. 1984. The origins of the Closepet Granites and the implications for the crustal evolution of Southern Karnataka. Journal of the Geological Society of India 25, 73–84.Google Scholar
  19. Friend, C. R. L. 1985. Evidence for fluid pathways through Archaean crust and the generation of the Closepet Granite, Karnataka, South India. Precambrian Research 27, 239–50.CrossRefGoogle Scholar
  20. Fyfe, W. S. 1973. The generation of batholiths. Tectonophysics 17, 273–83.CrossRefGoogle Scholar
  21. Gopalakrishna, D., E. C. Hansen & R. C. Newton 1986. The southern high-grade margin of the Dharwar Craton. Journal of Geology 94, 247–60.CrossRefGoogle Scholar
  22. Grew, E. S. & W. I. Manton 1984. Age of allanite from Kabbaldurga Quarry, Karnataka. Journal of the Geological Society of India 25, 193–5.Google Scholar
  23. Hamilton, J. V. & C. J. Hodgson 1986. Mineralization and structure of the Kolar Gold Field, India. In Gold ’86, A. J. MacDonald (ed.), 270–83. Willowdale, Ontario: Konsult International Inc.Google Scholar
  24. Hanmer, S. 1988. Great Slave Lake Shear Zone, Canadian Shield: reconstructed vertical profile of a crustal-scale fault zone. Tectonophysics 149, 245–64.CrossRefGoogle Scholar
  25. Hansen, E. C., A. S. Janardhan, R. C. Newton, W. K. B. N. Prame & G. R. Ravindra Kumar 1987. Arrested charnockite formation in southern India and Sri Lanka. Contributions to Mineralogy and Petrology 96, 225–44.CrossRefGoogle Scholar
  26. Hansen, E. C., R. C. Newton & A. S. Janardhan 1984. Fluid inclusions in rocks from the amphibolite-facies gneiss to charnockite progression in southern Karnataka, India: direct evidence concerning the fluids of granulite metamorphism. Journal of Metamorphic Geology 2, 249–64.CrossRefGoogle Scholar
  27. Harris, N. B. W. 1982. The petrogenesis of alkaline intrusives from Arabia and northeast Africa and their implications for within-plate magmatism. Tectonophysics 83, 243–58.CrossRefGoogle Scholar
  28. Harris, N. B. W. & S. Jayaram 1982. Metamorphism of cordierite gneisses from the Bangalore region of the Indian Archean. Lithos 15, 89–98.CrossRefGoogle Scholar
  29. Harrison, T. M., E. B. Watson & R. P. Rapp 1986. Does anatexis deplete the lower crust in heat-producing elements? Implications from experimental studies. EOS, Transactions, American Geophysical Union 67, 386.CrossRefGoogle Scholar
  30. Helgeson, H. C. 1969. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American Journal of Science 267, 729–804.CrossRefGoogle Scholar
  31. Hodges, K. V., P. LeFort & A. Pêcher 1988. Possible thermal buffering by crustal anatexis in collisional orogens. Geology 16, 707–10.CrossRefGoogle Scholar
  32. Hoisch, T. D. 1987a. Heat transport by fluids during late Cretaceous regional metamorphism in the Big Maria Mountains, southeastern California. Geological Society of America Bulletin 99, 549–53.CrossRefGoogle Scholar
  33. Hoisch, T. D. 1987b. Heat transport by fluids during channelized flow and thermal consequences for regional metamorphism. Geological Society of America, Abstracts with Programs 19, 704.Google Scholar
  34. Holland, T. J. B. & R. Powell 1985. An internally consistent thermodynamic dataset with uncertainties and correlations: 2. Data and results. Journal of Metamorphic Geology 3, 343–70.CrossRefGoogle Scholar
  35. Hollister, L. S. 1988. On the origin of CO2-rich fluid inclusions in migmatites. Journal of Metamorphic Geology 6, 467–74.CrossRefGoogle Scholar
  36. Holloway, J. R. 1973. The system pargasite-H2O-CO2: a model for melting of a hydrous mineral with a mixed-volatile fluid — I. Experimental results to 8 kbar. Geochimica et Cosmochimica Acta 37, 651–66.CrossRefGoogle Scholar
  37. Holtz, F., A. Ebadi, P. Barbey, W. Johannes & M. Pichavant 1988. Phase relations in the Qz-An-Or system at 2 and 5 kbar: the effect of a H2O - Terra Cognita 8, 66.Google Scholar
  38. Hutchison, W. W. 1970. Metamorphic framework and plutonic styles in the Prince Rupert region of the Central Coast Mountains, British Columbia. Canadian Journal of Earth Sciences 7, 376–405.CrossRefGoogle Scholar
  39. Iiyama, J. T. 1965. Influence des anions sur les équilibres d’exchange d’ions Na-K dans les feldspaths alcalines à 600°C sous une pression de 1000 bars. Bulletin de la Société Française de Minéralogie et de Cristallographie 88, 618–22.Google Scholar
  40. Jackson, N. J., J. N. Walsh & E. Pegram 1984. Geology, geochemistry and petrogenesis of late Precambrian granitoids in the Central Hijaz Region of the Arabian Shield. Contributions to Mineralogy and Petrology 87, 205–19.CrossRefGoogle Scholar
  41. Johannes, W. 1988. What controls partial melting in migmatites? Journal of Metamorphic Geology 6, 451–66.CrossRefGoogle Scholar
  42. Kerrick, R., B. J. Fryer, R. W. King, L. M. Willmore & E. van Hees 1987. Crustal outgassing and LILE enrichment in major lithosphère structures, Archaean Abitibi greenstone belt: evidence on the source reservoir from strontium and carbon isotope tracers. Contributions to Mineralogy and Petrology 97, 156–68.CrossRefGoogle Scholar
  43. Kerrick, D. M. & G. K. Jacobs 1981. A modified Redlich-Kwong equation for H2O, CO2, and H2O-CO2 mixtures at elevated pressures and temperatures. American Journal of Science 281, 735–67.CrossRefGoogle Scholar
  44. Lamb, R. C., P. C. Smalley & D. Field 1986. P-T conditions for the Arendal granulites, southern Norway: implications for the roles of P, T and CO2 in deep crustal LILE-depletion. Journal of Metamorphic Geology 4, 143–60.Google Scholar
  45. Lapin, A. V. & V. V. Ploshko 1988. Rock-association and morphological types of carbonatite and their geotectonic environments. International Geology Review 30, 390–6.CrossRefGoogle Scholar
  46. Luth, W. C. 1963. The system KAlSiO 4 -Mg 2 SiO 4 -H 2 O from 500 to 3000 bars and 800 to 1200 degrees, and its petrologic significance. PhD thesis, Pennsylvania State University.Google Scholar
  47. Mahabaleswar, B. & C. Naganna 1981. Geothermometry of Karnataka charnockites. Bulletin de Minéralogie 104, 848–55.Google Scholar
  48. Mahabaleswar, B., I. R. Vasant Kumar & C. R. L. Friend 1986. Geochemistry of the Archaean gneiss complex and associated rocks of the Kanakapura area, Karnataka, South India. Journal of the Geological Society of India 27, 282–97.Google Scholar
  49. McLelland, J., W. M. Hunt & E. C. Hansen 1988. The relationship between metamorphic charnockite and marble near Speculator, Central Adirondack Mountains, New York. Journal of Geology 96, 455–68.CrossRefGoogle Scholar
  50. McLelland, J. M. & J. Husain 1986. Nature and timing of anatexis in the eastern and southern Adirondack Highlands. Journal of Geology 94, 17–25.CrossRefGoogle Scholar
  51. Middlemost, E. A. K., D. K. Paul & I. R. Fletcher 1988. Geochemistry and mineralogy of the minette-lamproite association from the Indian Gondwanas. Lithos 22, 31–42.CrossRefGoogle Scholar
  52. Monrad, J. R. 1983. Evolution of sialic terranes in the vicinity of the Holenarsipur belt, Hassan District, Karnataka, India. In Precambrian of South India, S. M. Naqvi & J. J. W. Rogers (eds), 343–64. Geological Society of India, Memoir 4.Google Scholar
  53. Nesbitt, H. W. 1980. Genesis of the New Quebec and Adirondack granulites: evidence for their production by partial melting. Contributions to Mineralogy and Petrology 72, 303–10.CrossRefGoogle Scholar
  54. Newton, R. C., T. V. Charlu & O. J. Kleppa 1980. Thermochemistry of the high structural state plagioclases. Geochimica et Cosmochimica Acta 44, 933–41.CrossRefGoogle Scholar
  55. Olsen, S. N. 1985. Mass balance in migmatites. In Migmatites, J. R. Ashworth (ed.), 145–79. Glasgow: Blackie.CrossRefGoogle Scholar
  56. Olsen, S. N. 1987. The composition and role of the fluid in migmatites: a fluid inclusion study of the Front Range rocks. Contributions to Mineralogy and Petrology 96, 104–20.CrossRefGoogle Scholar
  57. Orville, P.M. 1963. Alkali ion exchange between vapor and feldspar phases. American Journal of Science 261, 201–37.CrossRefGoogle Scholar
  58. Peacock, S. M. 1987a. Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: implications for subduction zones. Contributions to Mineralogy and Petrology 95, 55–70.CrossRefGoogle Scholar
  59. Peacock, S. M. 1987b. Thermal effects of metamorphic fluids in subduction zones. Geology 15, 1057–60.CrossRefGoogle Scholar
  60. Peterson, J. W. & R. C. Newton 1987. Reversed biotite and quartz melting reactions. EOS, Transactions, American Geophysical Union 68, 451.Google Scholar
  61. Peterson, J. W. & R. C. Newton 1988a. Experimental constraints on the vapor-absent melting of phlogopite + quartz. EOS, Transactions, American Geophysical Union 69, 498.Google Scholar
  62. Peterson, J. W. & R. C. Newton 1988b. Experimental P-T constraints on the phlogopite-quartz-sanidine-enstatite-vapor-liquid invariant point. Geological Society of America, Abstracts with Programs 20, A190.Google Scholar
  63. Peterson, J. W. & R. C. Newton 1989. Reversed experiments on biotite-quartz-feldspar melting in the system KMASH: implications for crustal anatexis. Journal of Geology 97, 465–85.CrossRefGoogle Scholar
  64. Peucat, J. J., P. H. Vidal, J. Bernard-Griffiths & K. C. Condie 1987. Sr, Nd, and Pb systems across the amphibolite to granulite facies transition in southern India. Terra Cognita 7, 333.Google Scholar
  65. Phillips, G. N. 1980. Water activity changes across an amphibolite-granulite facies transition, Broken Hill, Australia. Contributions to Mineralogy and Petrology 75, 377–86.CrossRefGoogle Scholar
  66. Pichamuthu, C. S. 1965. Regional metamorphism and charnockitization in Mysore State, India. Indian Mineralogist 6, 119–26.Google Scholar
  67. Pichamuthu, C. S. & R. Srinivasan 1984. The Dharwar Craton. Indian National Science Academy, Perspective Report Series 7, 3–34.Google Scholar
  68. Powell, R. 1983. Processes in granulite-facies metamorphism. In Migmatites, melting and metamorphism, M. P. Atherton & C. D. Gribble (eds), 127–39. Nantwich, UK: Shiva.Google Scholar
  69. Pride, C. & G. K. Muecke 1980. Rare earth element geochemistry of the Scourian Complex, N.W. Scotland — evidence for the granite-granulite link. Contributions to Mineralogy and Petrology 73, 403–12.CrossRefGoogle Scholar
  70. Puziewicz, J. & W. Johannes 1988. Phase equilibria and compositions of Fe-Mg-Al minerals and melts in water-saturated peraluminous granitic systems. Contributions to Mineralogy and Petrology 100, 156–68.CrossRefGoogle Scholar
  71. Quensel, P. 1952. The charnockite series of the Varberg district on the southwest coast of Sweden. Arkiv för Mineralogi och Geologi 1, 229–332.Google Scholar
  72. Raase, P., M. Raith, D. Ackermand & R. K. Lal 1986. Progressive metamorphism of mafic rocks from greenschist to granulite facies in the Dharwar Craton of South India. Journal of Geology 94, 261–82.CrossRefGoogle Scholar
  73. Radhakrishna, B. P. 1956. The Closepet Granite of Mysore State, India. Bangalore: Mysore Geological Association Special Publication, 110 pp.Google Scholar
  74. Radhakrishna, B. P. 1958. On the nature of certain brick-red zones in Closepet granite. Mysore Geological Department Records 48, 61–73.Google Scholar
  75. Raith, M., C. Hengst, B. Nagel, A. Bhattacharya & C. Srikantappa 1988. Metamorphic conditions in the Nilgiri granulite terrane and the adjacent Moyar and Bhavani shear zones: a reinterpretation. Journal of the Geological Society of India 31, 112–13.Google Scholar
  76. Rama Rao, B. 1940. The Archaean Complex of Mysore. Mysore Geological Department Bulletin 17, 1–101.Google Scholar
  77. Rogers, J. J. W. & J. K. Greenberg 1981. Trace elements in continental margin magmatism. III. Alkali granites and their relation to cratonization. Geological Society of America Bulletin 92(II), 57–93.CrossRefGoogle Scholar
  78. Rogers, J. J. W., E. J. Callahan, K. O. Dennen, P. D. Fullagar, P. T. Stroh & L. F. Wood 1986. Chemical evolution of Peninsular Gneiss in the western Dharwar Craton, southern India. Journal of Geology 94, 233–46.CrossRefGoogle Scholar
  79. Rubie, D. C. & W. D. Gunter 1983. The role of speciation in alkaline igneous fluids during fenite metasomatism. Contributions to Mineralogy and Petrology 82, 165–75.CrossRefGoogle Scholar
  80. Schmid, R. 1978. Are the metapelites of the Ivrea-Verbano Zone restites? Memohe di Scienze Geologiche 33, 67–9.Google Scholar
  81. Sørensen, K. 1983. Growth and dynamics of the Nordre Stromfjord shear zone. Journal of Geophysical Research 88, 3419–38.CrossRefGoogle Scholar
  82. Stähle, H. J., M. Raith, S. Hoernes & A. Delfs 1987. Element mobility during incipient granulite formation at Kabbaldurga, southern India. Journal of Petrology 28, 803–34.Google Scholar
  83. Stern, R. J. 1985. The Najd fault system, Saudi Arabia and Egypt: a late Precambrian rift-related transform system? Tectonics 4, 497–511.CrossRefGoogle Scholar
  84. Subrahmanyam, C. 1978. On the relation of gravity anomalies to geotectonics of the Precambrian terrains of the South Indian Shield. Journal of the Geological Society of India 19, 251–63.Google Scholar
  85. Subramaniam, A. P. 1967. Charnockites and granulites of southern India: a review. Dansk Geologisk Forening Meddelelser 17, 473–93.Google Scholar
  86. Suryanarayana, K. V. 1960. The Closepet Granite and associated rocks. Indian Mineralogist 1, 86–100.Google Scholar
  87. Sylvester, P. 1989. Post-collisional alkaline granites. Journal of Geology 97, 261–80.CrossRefGoogle Scholar
  88. Taylor, P. N., S. Moorbath, B. Chadwick, M. Ramakrishnan & M. N. Viswanatha 1984. Petrography, chemistry, and isotopic ages of Peninsular gneiss, Dharwar acid volcanic rocks, and the Chitradurga granite with special reference to the late Archean evolution of the Karnataka craton, southern India. Precambrian Research 23, 349–75.CrossRefGoogle Scholar
  89. Touret, J. 1985. Fluid regime in southern Norway: the record of fluid inclusions. In The deep Proterozoic crust in the North Atlantic provinces, A. C. Tobi & J. L. R. Touret (eds), 517–49. Dordrecht: Reidel.Google Scholar
  90. Touret, J. & Y. Bottinga 1979. Equation d’état pour le CO2; application aux inclusions carboniques. Bulletin de Minéralogie 102, 577–83.Google Scholar
  91. Valley, J. W. & J. R. O’Neil 1984. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence. Contributions to Mineralogy and Petrology 85, 158–73.CrossRefGoogle Scholar
  92. Wallace, M. E. & D. H. Green 1988. An experimental determination of primary carbonatite magma composition. Nature 335, 343–6.CrossRefGoogle Scholar
  93. Waters, D. J. 1988. Partial melting and the formation of granulite facies assemblages in Namaqualand, South Africa. Journal of Metamorphic Geology 6, 387–404.CrossRefGoogle Scholar
  94. Weaver, B. L. 1980. Rare-earth element geochemistry of Madras granulites. Contributions to Mineralogy and Petrology 71, 271–9.CrossRefGoogle Scholar
  95. Weaver, B. L. & J. Tarney 1983. Elemental depletion in Archaean granulite-facies rocks. In Migmatites, melting and metamorphism, M. P. Atherton & C. D. Gribble (eds), 250–63. Nantwich, UK: Shiva.Google Scholar
  96. Wendlandt, R. F. 1981. Influence of CO2 on melting of model granulite facies assemblages: a model for the genesis of charnockites. American Mineralogist 66, 1164–74.Google Scholar
  97. Wickham, S. M. 1987. The segregation and emplacement of granitic magmas. Journal of the Geological Society of London 144, 281–97.CrossRefGoogle Scholar
  98. Wickham, S. M. 1988. Underplating, anatexis, and assimilation of metacarbonate: a possible source for large CO2 fluxes in the deep crust. Journal of the Geological Society of India 31, 162.Google Scholar
  99. Wood, B. J. 1976. The reaction phlogopite + quartz = enstatite + sanidine + H2O. Progress in experimental petrology. Natural Environment Research Council (Great Britain) 3, 17–20.Google Scholar

Copyright information

© J.R. Ashworth, M. Brown & contributors 1990

Authors and Affiliations

  • Robert C. Newton

There are no affiliations available

Personalised recommendations