Advertisement

Isotopic modification of the continental crust: implications for the use of isotope tracers in granite petrogenesis

  • Stephen M. Wickham
Chapter
Part of the The Mineralogical Society Series book series (MIBS, volume 2)

Abstract

The use of isotope systematics in the study of igneous and metamorphic processes has revolutionized our understanding of the geochemical evolution of the Earth. This technique has been particularly important in studies of crustal magmatism, and has permitted the identification of granitoid source regions and the evaluation of magmatic mixing process (e. g. O’Neil & Chappell 1977, Taylor & Silver 1978, Allègre & Ben Othman 1980, Farmer & DePaolo 1983, Fleck & Criss 1985, Taylor 1980, DePaolo 1981, Vitrac-Michard et al. 1980). More recently, these studies have been expanded to include metamorphic processes and fluid (in addition to magma) transport at all levels in the crust.

Keywords

Isotopic Composition Source Rock Continental Crust Biotite Granite Silicic Magma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allègre, C. J. & D. Ben Othman 1980. Nd-Sr isotopic relationship in granitoid rocks and continental crust development: a chemical approach to orogenesis. Nature 286, 335–41.CrossRefGoogle Scholar
  2. Ashworth, J. R. (ed.) 1985. Migmatites. Glasgow: Blackie.Google Scholar
  3. Banda, E. & S. M. Wickham (eds) 1986. The Geological Evolution of the Pyrenees. Tectonophysics 129.Google Scholar
  4. Ben Othman, D., S. Fourcade & C. J. Allègre 1984. Recycling processes in granite-granodiorite complex genesis: the Querigut case studied by Nd-Sr isotope systematics. Earth and Planetary Science Letters 69, 290–300.CrossRefGoogle Scholar
  5. Bickle, M. J., S. M. Wickham, H. J. Chapman & H. P. Taylor Jr 1988. A strontium, neodymium and oxygen isotope study of hydrothermal metamorphism and crustal anatexis in the Trois Seigneurs Massif, Pyrenees, France. Contributions to Mineralogy and Petrology 100, 399–417.CrossRefGoogle Scholar
  6. Bowen, N. L. 1928. The evolution of the igneous rocks. Reprinted 1956, New York: Dover.Google Scholar
  7. Burke, W. H., R. E. Dennison, E. A. Hetherington, R. B. Koepnick, H. F. Nelson & J. B. Otto 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516–19.CrossRefGoogle Scholar
  8. Crittenden, M. D. Jr, P. J. Coney & G. H. Davis 1980. Cordilleran metamorphic core complexes. Geological Society of America, Memoir 153, 490 pp.Google Scholar
  9. Dalimeyer, R. D., A. W. Snoke & E. H. McKee 1986. The Mesozoic-Cenozoic tectonothermal evolution of the Ruby Mountains-East Humboldt Range, Nevada: a Cordilleran metamorphic core complex. Tectonics 5, 931–54.CrossRefGoogle Scholar
  10. DePaolo, D. J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189–202.CrossRefGoogle Scholar
  11. Ernst, G. (ed.) 1988. Metamorphism and crustal evolution of the Western United States. Rubey Volume VII. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  12. Farmer, G. L. & D. J. DePaolo 1983. Origin of Mesozoic and Tertiary granite in the Western United States and implications for pre-Mesozoic crustal structure I. Nd and Sr isotopic studies in the Geocline of the Northern Great Basin. Journal of Geophysical Research 88, 3379–401.CrossRefGoogle Scholar
  13. Fleck, R. J. & R. E. Criss 1985. Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho. Contributions to Mineralogy and Petrology 90, 291–308.CrossRefGoogle Scholar
  14. Flood, R. H. and S. E. Shaw 1977. Two ‘S-type’ granite suites with low initial 87Sr/86Sr ratios from the New England batholith, Australia. Contributions to Mineralogy and Petrology 61, 163–73.CrossRefGoogle Scholar
  15. Fourcade, S. & C. J. Allègre 1981. Trace element behaviour in granite genesis: a case study. The calc-alkaline plutonic association from the Querigut complex (Pyrenees, France). Contributions to Mineralogy and Petrology 76, 177–95.CrossRefGoogle Scholar
  16. Frost T. P. & G. A. Mahood 1988. Field, chemical and physical constraints on mafic-felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. Geological Society of America Bulletin 99, 272–91.CrossRefGoogle Scholar
  17. Garlick, G. D. & S. Epstein 1966. Oxygen isotope ratios in coexisting minerals of regionally metamorphosed rocks. Geochimica et Cosmochimica Acta 31, 181–214.CrossRefGoogle Scholar
  18. Gupta, L. N. & W. Johannes 1982. Petrogenesis of a stromatic migmatite (Nelaug, South Norway). Journal of Petrology 23, 548–67.Google Scholar
  19. Hensel, H. D., M. T. McCulloch & B. W. Chappell 1985. The New England Batholith: constraints on its derivation from Nd and Sr isotopic studies of granitoids and country rocks. Geochimica et Cosmochimica Acta 49, 369–84.CrossRefGoogle Scholar
  20. Holland, H. D. 1984. The chemical evolution of the atmosphere and oceans. Princeton, NJ: Princeton University Press.Google Scholar
  21. Huppert, H. E. & R. S. J. Sparks 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology 29, 599–624.Google Scholar
  22. Jäger E. & H. J. Zwart 1968. Rb-Sr age determinations of some gneisses and granites of the Aston-Hospitalet massif (Pyrenees). Geologie en Mijnbouw 47, 349–57.Google Scholar
  23. Joplin, G. A. 1942. Petrological studies in the Ordovician of New South Wales. I. The Cooma complex. Proceedings of the Linnean Society of New South Wales 67, 159–96.Google Scholar
  24. Kistler, R. W., E. D. Ghent & J. R. O’Neil 1981. Petrogenesis of garnet two-mica granites in the Ruby Mountains, Nevada. Journal of Geophysical Research 86, 10 591–606.Google Scholar
  25. Lee, D. E., R. W. Kistler, I. Friedman & R. E. van Loenen 1981. Two-mica granites of northeastern Nevada. Journal of Geophysical Research 86, 10 607–16.Google Scholar
  26. Lush, A. P., A. J. McGrew, A. W. Snoke & J. E. Wright 1988. Allochthonous Archean basement in the northern East Humboldt Range, Nevada. Geology 16, 349–53.CrossRefGoogle Scholar
  27. Majoor, F. J. M. & H. N. A. Priem 1987. Rb-Sr whole-rock investigations in the Aston massif, central Pyrenees. Geologische Rundschau 76, 787–94.CrossRefGoogle Scholar
  28. Mehnert, K. R. 1968. Migmatites and the origin of granitic rocks. Amsterdam: Elsevier.Google Scholar
  29. Miller, E. L., P. B. Gans, J. E. Wright & J. F. Sutter 1988. Metamorphic history of the east-central Basin and Range Province: tectonic setting and relationship to magmatism. In Metamorphism and crustal evolution of the Western United States, W. G. Ernst (ed.), 649–82. Rubey Volume VII. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  30. Munksgaard, N. C. 1988. Source of the Cooma Granodiorite, New South Wales; a possible role of fluid-rock interactions. Australian Journal of Earth Sciences 35, 363–77.CrossRefGoogle Scholar
  31. Nabelek, P. I., T. C. Labotka, J. R. O’Neil & J. J. Papike 1984. Contrasting fluid/rock interaction between the Notch Peak granitic intrusion and argillites and limestones in western Utah: evidence from stable isotopes and phase assemblages. Contributions to Mineralogy and Petrology 86, 25–34.CrossRefGoogle Scholar
  32. Norton, D. & H. P. Taylor Jr 1979. Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: an analysis of the Skaergaard intrusion. Journal of Petrology 20, 421–86.Google Scholar
  33. Olsen S. N. 1984. Mass-balance and mass-transfer in migmatites from the Colorado Front Range. Contributions to Mineralogy and Petrology 85, 30–44.CrossRefGoogle Scholar
  34. O’Neil, J. R. & B. W. Chappell 1977. Oxygen and hydrogen isotope relations in the Berridale batholith. Journal of the Geological Society of London 133, 559–71.CrossRefGoogle Scholar
  35. Peucat, J. J., P. Jegouzo, P. Vidal & J. Bernard-Griffiths 1988. Continental crust formation seen through the Sr and Nd isotope systematics of S-type granites in the Hercynian belt of western France. Earth and Planetary Science Letters 88, 60–8.CrossRefGoogle Scholar
  36. Pidgeon, R. T. & W. Compston 1965. The age and origin of the Cooma granite and its associated metamorphic zones, New South Wales. Journal of Petrology 6, 193–222.Google Scholar
  37. Reynolds, D. L., 1946. The sequence of geochemical changes leading to granitization. Quarterly Journal of the Geological Society of London 102, 389–446.CrossRefGoogle Scholar
  38. Rye, R. O., B. R. Doe & J. D. Wells 1974. Stable isotope and lead isotope studies of the Cortez, Nevada, gold deposit and surrounding area. Journal of Research of the United States Geological Survey 2, 13–23.Google Scholar
  39. Sheppard, S. M. F. 1986. Igneous rocks: III. Isotopic case studies of magmatism in Africa, Eurasia and Oceanic Islands. In Stable Isotopes in High Temperature Geological Processes, J. W. Valley, H. P. Taylor, Jr & J. R. O’Neil (eds), 319–72. Reviews in Mineralogy, vol. 16. Washington, D.C.: Mineralogical Society of America.Google Scholar
  40. Snoke, A. W. & D. M. Miller 1988. Metamorphic and tectonic history of the northeastern Great Basin. In Metamorphism and crustal evolution of the Western United States, W. G. Ernst (ed.), 606–48. Rubey Volume VII. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  41. Solomon, G. C. & H. P. Taylor Jr 1989. Isotopic evidence for the origin of Mesozoic and Cenozoic granitic plutons in the northern Great Basin. Geology 17, 591–4.CrossRefGoogle Scholar
  42. Sparks, R. S. J. & L. A. Marshall 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. Journal of Volcanology and Geothermal Research 29, 99–124.CrossRefGoogle Scholar
  43. Taylor, H. P. Jr 1980. The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth and Planetary Science Letters 47, 243–54.CrossRefGoogle Scholar
  44. Taylor, H. P. Jr & S. M. F. Sheppard 1986. Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In Stable Isotopes in High Temperature Geological Processes, J. W. Valley, H. P. Taylor, Jr & J. R. O’Neil (eds) 227–72. Reviews in Mineralogy, vol. 16. Washington, D.C.: Mineralogical Society of America.Google Scholar
  45. Taylor, H. P. Jr & L. T. Silver 1978. Oxygen isotope relationships in plutonic igneous rocks of the Peninsular Ranges batholith, southern and Baja California. In Short papers of the fourth International Conference on Geochronology, Cosmochronology, and Isotope Geology, 423–6. U.S. Geological Survey Open-file report 78–701.Google Scholar
  46. Vitrac-Michard, A. & C. J. Allègre 1975. A study of the formation and history of a piece of continental crust by 87Rb-87Sr method: the case of the French Oriental Pyrenees. Contributions to Mineralogy and Petrology 50, 257–85.CrossRefGoogle Scholar
  47. Vitrac-Michard, A., F. Albarède, C. Dupuis & H. P. Taylor, Jr 1980. The genesis of Variscan (Hercynian) plutonic rocks: inferences from Sr, Pb and O studies of the Maladeta igneous complex, Central Pyrenees, Spain. Contributions to Mineralogy and Petrology 72, 57–72.CrossRefGoogle Scholar
  48. Vitrac-Michard, A., F. Albarède & C. J. Allègre 1981. Lead isotopic composition of Hercynian granitic K-feldspars constrains continental genesis. Nature 291, 460–4.CrossRefGoogle Scholar
  49. White A. J. R. & B. W. Chappell 1988. Some supracrustal (S-type) granites of the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 169–81.CrossRefGoogle Scholar
  50. White A. J. R., J. D. Clemens, J. R. Holloway, L. T. Silver, B. W. Chappell & V. J. Wall 1986. S-type granites and their probable absence in southwestern North America. Geology 14, 115–18.CrossRefGoogle Scholar
  51. Wickham, S. M. 1987a. Crustal anatexis and granite petrogenesis during low pressure regional metamorphism: the Trois Seigneurs Massif, Pyrenees, France. Journal of Petrology 28, 127–69.Google Scholar
  52. Wickham, S. M. 1987b. The segregation and emplacement of granitic magmas. Journal of theGeological Society of London 144, 281–97.CrossRefGoogle Scholar
  53. Wickham, S. M. & M. T. Peters 1988. Fluid and melt transport in anatectic environments. GSA abstract, Denver, Colorado. Geological Society of America, Abstracts with Programs 20, A304.Google Scholar
  54. Wickham, S. M. & H. P. Taylor Jr 1985. Stable isotopic evidence for large-scale seawater infiltration in a regional metamorphic terrane: the Trois Seigneurs Massif, Pyrenees, France. Contributions to Mineralogy and Petrology 91, 122–37.CrossRefGoogle Scholar
  55. Wickham, S. M. & H. P. Taylor Jr 1987. Stable isotope constraints on the origin and depth of penetration of hydrothermal fluids associated with Hercynian regional metamorphism and crustal anatexis in the Pyrenees. Contributions to Mineralogy and Petrology 95, 255–68.CrossRefGoogle Scholar
  56. Wickham, S. M. & H. P. Taylor Jr 1989. Hydrothermal systems associated with regional metamorphism and crustal anatexis: examples from the Pyrenees, France. In Special volume onfluids and crustal processes, National Research Council (in press).Google Scholar
  57. Wickham, S. M., H. P. Taylor Jr & A. W. Snoke 1987. Fluid-rock-melt interaction in metamorphic core complexes — a stable isotope study of the Ruby Mountains — East Humboldt Range, Nevada. GSA Abstract, Hilo, Hawaii. Geological Society of America, Abstracts withPrograms 19(6), 463.Google Scholar
  58. Wright, J. E. & A. W. Snoke 1986. Mid-Tertiary mylonitization in the Ruby Mountain — East Humboldt Range metamorphic core complex, Nevada. Geological Society of America, Abstracts with Programs 18, 795.Google Scholar
  59. Wyborn, L. A. I. & B. W. Chappell 1983. Chemistry of the Ordovician and Silurian greywackes of the Snowy Mountains, southeastern Australia: an example of chemical evolution of sediments with time. Chemical Geology 39, 81–92.CrossRefGoogle Scholar
  60. Zwart, H. J. 1962. On the determination of polymetamorphic mineral associations, and its application to the Bosost area (Central Pyrenees). Geologische Rundschau 52, 38–65.CrossRefGoogle Scholar

Copyright information

© J.R. Ashworth, M. Brown & contributors 1990

Authors and Affiliations

  • Stephen M. Wickham

There are no affiliations available

Personalised recommendations