Formation and composition of H2O-undersaturated granitic melts

  • W. Johannes
  • F. Holtz
Part of the The Mineralogical Society Series book series (MIBS, volume 2)


Granites are a very common component of the continental crust, and granitic melts are the most important medium for the transport of silicon, alkali metals and some associated, less abundant, elements from lower to higher crustal levels. Granites have been the subject of numerous petrographic and experimental investigations. The first systematic experimental research was performed in the synthetic haplogranitic system Qz-Ab-Or-H2O (Tuttle & Bowen 1958, Luth, Jahns & Tuttle 1964). Other investigations with natural rocks as the starting material were performed by Winkler and co-workers (summarized in Winkler 1979). The results of these H2O-saturated experiments emphasized that granitic magmas can exist at relatively low temperatures within the continental crust, and that many crystalline rocks can be the source of granitic melts.


Lower Crust Granitic Magma Mafic Mineral Solidus Surface Dehydration Melting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arzi, A. A. 1978. Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44, 173–84.CrossRefGoogle Scholar
  2. Barbey, P., J. Bernard-Griffiths & J. Convert 1986. The Lapland charnockitic complex: REE geochemistry and petrogenesis. Lithos 19, 95–111.CrossRefGoogle Scholar
  3. Bateman, P. C. & B. W. Chappell 1979. Crystallization, fractionation and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. Geological Society of America Bulletin 90, 465–82.CrossRefGoogle Scholar
  4. Bhattacharya, A. & S. K. Sen 1986. Granulite metamorphism, fluid buffering, and dehydration melting in the Madras charnockites and metapelites. Journal of Petrology 27, 1119–41.Google Scholar
  5. Boettcher, A. L., R. W. Luth & B. S. White 1987. Carbon in silicate liquids: the systems NaAlSi3O8-CO2, CaAl2Si2O8-CO2 and KAlSi3O8-CO2. Contributions to Mineralogy and Petrology 97, 297–304.CrossRefGoogle Scholar
  6. Bohlen, S. R., A. L. Boettcher, V.J. Wall & J. D. Clemens 1983. Stability of phlogopite-quartz and sandine-quartz: a model for melting in the lower crust. Contributions to Mineralogy and Petrology 83, 270–7.CrossRefGoogle Scholar
  7. Bowen, N. L. 1913. The melting phenomena of the plagioclase feldspars. American Journal of Science 35, 577–99.CrossRefGoogle Scholar
  8. Burnham, C. W. 1979. The importance of volatile constituents. In The evolution of the igneous rocks, H. S. Yoder, (ed.), 439–82. Princeton, NJ: Princeton University Press.Google Scholar
  9. Chappell, B. W. & A. J. R. White 1974. Two contrasting granite types. Pacific Geology 8, 173–4.Google Scholar
  10. Chappell, B. W., A. J. R. White & D. Wyborn 1987. The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology 28, 1111–38.Google Scholar
  11. Clemens, J. D. & V. J. Wall 1981. Origin and crystallization of some peraluminous (S-type) granitic magmas. Canadian Mineralogist 19, 111–31.Google Scholar
  12. Clemens, J. D. & D. Vielzeuf 1987. Constraints on melting and magma production in the crust. Earth and Planetary Science Letters 86, 287–306.CrossRefGoogle Scholar
  13. Conrad, W. K., I. A. Nicholls & V. J. Wall 1988. Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo volcanic zone, New Zealand, and other occurrences. Journal of Petrology 29, 765–803.Google Scholar
  14. Ebadi, A., D. Ziegenbein & W. Johannes 1987. Schmelzbildung im Granitsystem Qz-Ab-Or bei Wasseraktivitäten kleiner 1. Fortschritte der Mineralogie 65, 41.Google Scholar
  15. Fyfe, W. S. 1973. The granulite facies, partial melting and the Archaean crust. Philosophical Transactions of the Royal Society of London A273, 457–61.Google Scholar
  16. Grant, J. A. 1985. Phase equilibria in partial melting of pelitic rocks. In J. R. Ashworth (ed.), Migmatites, 86–144. Glasgow: Blackie.CrossRefGoogle Scholar
  17. Green, T. H. 1976. Experimental generation of cordierite- or garnet-bearing granitic liquids from a pelitic composition. Geology 4, 85–8.CrossRefGoogle Scholar
  18. Holtz, F., W. Johannes, P. Barbey & M. Pichavant 1988. Liquidus phase relations in the system Qz-Ab-Or at 2 kbar: the effect of a h2o. EOS, Transactions, American Geophysical Union, 69, 513.Google Scholar
  19. Huang, W. L. & P. J. Wyllie 1975. Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2 to 35 kilobars, dry and with excess water. Journal of Geology 83, 737–48.CrossRefGoogle Scholar
  20. Huang, W. L. & P. J. Wyllie 1986. Phase relationships of gabbro-tonalite-granite-water at 15 kbar with applications to differentiation and anatexis. American Mineralogist 71, 301–16.Google Scholar
  21. Jaeger, J. C. 1968. Cooling and solidification of igneous rocks. In Basalts, H. H. Hess & A. Poldervaart (eds), 503–36. New York: Interscience.Google Scholar
  22. Johannes, W. 1978. Melting of plagioclase in the system Ab-An-H2O and Qz-Ab-An-H2O at P H2O = 5 kbar, an equilibrium problem. Contributions to Mineralogy and Petrology 66, 295–303.CrossRefGoogle Scholar
  23. Johannes, W. 1984. Beginning of melting in the granite system Qz-Or-Ab-An-HzO. Contributions to Mineralogy and Petrology 86, 264–73.CrossRefGoogle Scholar
  24. Johannes, W. 1985. The significance of experimental studies for the formation of migmatites. In Migmatites, J. R. Ashworth (ed.), 36–85. Glasgow: Blackie.CrossRefGoogle Scholar
  25. Johannes, W. 1989. Melting of plagioclase-quartz assemblages at 2 kbar water pressure. Contributions to Mineralogy and Petrology, 103, 270–6.CrossRefGoogle Scholar
  26. Johnson, C. A., S. R. Bohlen & E. J. Essene 1983. An evaluation of garnet-clinopyroxene geothermometry in granulites. Contributions to Mineralogy and Petrology 84, 191–8.CrossRefGoogle Scholar
  27. Kerrick D. M. & G. K. Jacobs 1981. A modified Redlich-Kwong equation for H2O, CO2, and H2O-CO2 mixtures at elevated pressures and temperatures. American Journal of Science 281, 735–67.CrossRefGoogle Scholar
  28. Lamb, W. M. & J. W. Valley 1984. Metamorphism of reduced granulites in low-CO2 vapour-free environment. Nature 312, 56–8.CrossRefGoogle Scholar
  29. Lamb, W. M. & J. W. Valley 1988. Granulite facies amphibole and biotite equilibria, and calculated peak-metamorphic water activities. Contributions to Mineralogy and Petrology 100, 349–60.CrossRefGoogle Scholar
  30. Le Breton, N. & A. B. Thompson 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology 99, 226–37.CrossRefGoogle Scholar
  31. Luth, W. C, R. H. Jahns & O. F. Tuttle 1964. The granite system at pressures of 4 to 10 kilobars. Journal of Geophysical Research 69, 759–73.CrossRefGoogle Scholar
  32. Maaløe, S. 1985. Principles of igneous petrology. Berlin: Springer.CrossRefGoogle Scholar
  33. Miller, C. F., E. B. Watson & R. P. Rapp 1985. Experimental investigation of mafic mineral-felsic liquid equilibria: preliminary results and petrogenetic implications. EOS, Transactions, American Geophysical Union 66, 1130.Google Scholar
  34. van der Molen, I. & M. S. Paterson 1979. Experimental deformation of partially-melted granite. Contributions to Mineralogy and Petrology 70, 299–318.CrossRefGoogle Scholar
  35. Naney, M. T. 1983. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. American Journal of Science 283, 993–1033.CrossRefGoogle Scholar
  36. Nekvasil, H. 1988. Calculated effect of anorthite component on the crystallization paths of H2O- undersaturated haplogranitic melts. American Mineralogist 73, 966–81.Google Scholar
  37. Nekvasil, H. & C. W. Burnham 1987. The calculated individual effects of pressure and water content on phase equilibria in the granite system. In Magmatic processes: physicochemical principles, B. O. Mysen (ed.), 433–45. Geochemical Society Special Publication 1.Google Scholar
  38. Presnall, D. C. & P.C. Bateman 1973. Fusion relations in the system NaAlSi3O8-CaAl2Si2O8- KAlSi3O8-SiO2-H2O and generation of granitic magmas in the Sierra Nevada Batholith. Geological Society of America Bulletin 84, 3181–202.CrossRefGoogle Scholar
  39. Puziewicz, J. & W. Johannes 1988. Phase equilibria and compositions of Fe-Mg-Al minerals and melts in water-saturated peraluminous granitic systems. Contributions to Mineralogy and Petrology 100, 156–68.CrossRefGoogle Scholar
  40. Puziewicz, J. & W. Johannes 1989. Experimental study of biotite-orthopyroxene-magnetite-granitic melt assemblages: Results obtained at water-saturated and -undersaturated conditions and controlled oxygen fugacity. Contributions to Mineralogy and Petrology, in press.Google Scholar
  41. Schenk, V. 1984. Petrology of felsic granulites, metapelites, metabasics, ultramafics, and metacarbonates from Southern Calabria (Italy): prograde metamorphism, uplift and cooling of a former lower crust. Journal of Petrology 25, 255–98.Google Scholar
  42. Schreurs, J. & L. Westra 1986. The thermotectonic evolution of a Proterozoic, low pressure, granulite dome, West Uusimaa, SW Finland. Contributions to Mineralogy and Petrology 93, 236–50.CrossRefGoogle Scholar
  43. Steiner, J. C. 1970. An experimental study of the assemblage alkali feldspar + liquid + quartz in the system NaAlSi 3 O 8-KAlSi 3 O 8-SiO 2-H 2 O at 4000 bars. PhD Thesis, Stanford University.Google Scholar
  44. Stern, C. R. & P. J. Wyllie 1981. Phase relationships of I-type granite with H2O to 35 kilobars: the Dinkey Lakes Biotite-Granite from the Sierra Nevada Batholith. Journal of Geophysical Research 86, 10 412–22.Google Scholar
  45. Stolper, E., G. Fine, T. Johnson & S. Newman 1987. Solubility of carbon dioxide in albitic melt. American Mineralogist 72, 1071–85.Google Scholar
  46. Sykes, M. L. & J. R. Holloway 1987. Evolution of granitic magmas during ascent: a phase equilibrium model. In Magmatic processes: physicochemical principles, B. O. Mysen (ed.), 447–61. Geochemical Society Special Publication 1.Google Scholar
  47. Thompson, A. B. 1982. Dehydration melting of pelitic rocks and the generation of H2O- undersaturated granitic liquids. American Journal of Science 282, 1567–95.CrossRefGoogle Scholar
  48. Tuttle, O. F. & N. L. Bowen 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geological Society of America, Memoir 74.Google Scholar
  49. Vielzeuf, D. & J. R. Holloway 1988. Experimental determination of the fluid-absent melting relations in the pelitic system: consequences for crustal differentiation. Contributions to Mineralogy and Petrology 98, 257–76.CrossRefGoogle Scholar
  50. White, A. J. R. & B. W. Chappell 1988. Some supracrustal (S-type) granites of the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 169–81.CrossRefGoogle Scholar
  51. Whitney, J. A. 1975. The effects of pressure, temperature and X H2O on phase assemblages in four synthetic rock compositions. Journal of Geology 83, 1–31.CrossRefGoogle Scholar
  52. Whitney, J. A. 1988. The origin of granite: the role and source of water in the evolution of granitic magmas. Geological Society of America Bulletin 100, 1886–97.CrossRefGoogle Scholar
  53. Winkler, H. G. F. 1979. Petrogenesis of metamorphic rocks, 5th edn. New York: Springer.CrossRefGoogle Scholar
  54. Yoder, H. S. 1968. Albite-anorthite-quartz-water at 5 kbar. Carnegie Institution of Washington Yearbook 66, 477–8.Google Scholar
  55. Yoder, H. S., D. B. Stewart & J. R. Smith 1957. Feldspars. Carnegie Institution of Washington Yearbook 56, 206–14.Google Scholar

Copyright information

© J.R. Ashworth, M. Brown & contributors 1990

Authors and Affiliations

  • W. Johannes
  • F. Holtz

There are no affiliations available

Personalised recommendations