Advertisement

Graphical analysis of P—T—X relations in granulite facies metapelites

  • B. J. Hensen
  • S. L. Harley
Chapter
Part of the The Mineralogical Society Series book series (MIBS, volume 2)

Abstract

The study of the complex mineral reactions in metamorphic rocks is facilitated by graphical representation in the form of chemographic projections and phase diagrams. In this chapter we discuss and develop the graphical analysis of phase relations in multicomponent systems containing Fe-Mg solid solutions. Particular emphasis is placed on the relevance of divariant and univariant equilibria for the interpretation of mineral reactions in high-grade metapelites.

Keywords

Invariant Point Univariant Reaction Pelitic Rock Ferromagnesian Mineral Absent Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermand, D., R. K. Herd, M. Reinhardt & B. F. Windley 1987. Sapphirine parageneses from the Caraiba complex, Bahia, Brazil: the influence of Fe2+-Fe3+ distribution on the stability of sapphirine in natural assemblages. Journal of Metamorphic Geology 5, 323–40.CrossRefGoogle Scholar
  2. Albee, A. L. 1965. A petrogenetic grid for the Fe-Mg silicates of pelitic schists. American Journal of Science 263, 512–36.CrossRefGoogle Scholar
  3. Andrew, A. S. & J. Linde 1980. MRF, a FORTRAN IV computer program for the generation of univariant phase equilibria. Computers & Geosciences 6, 227–36.CrossRefGoogle Scholar
  4. Annersten, H. & F. Seifert 1981. Stability of the assemblage orthopyroxene-sillimanite-quartz in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O. Contributions to Mineralogy and Petrology 77, 158–165.CrossRefGoogle Scholar
  5. Aranovich, L. Ya. & K. K. Podlesskii 1983. The cordierite-garnet-sillimanite-quartz equilibrium: experiments and applications. In Kinetics and equilibrium in mineral reactions, S. K. Saxena (ed.), 173–98. New York: Springer-Verlag.CrossRefGoogle Scholar
  6. Aranovich, L. Ya & K. K. Podlesskii 1989. Geothermobarometry of high-grade metapelites: simultaneously operating reactions. In Evolution of metamorphic belts, J. S. Daly, R. A. Cliff & B. W. D. Yardley (eds). Geological Society of London Special Publication, in press.Google Scholar
  7. Ballevre, M., J. Pinardon, J. R. Kienast & J. P. Vuichard 1989. Reversal of Fe-Mg partitioning between garnet and staurolite: implications for high pressure metapelites. Journal of Petrology 30, in press.Google Scholar
  8. Berg, J. H. 1977. Regional geobarometry in the contact aureoles of the anorthositic Nain Complex, Labrador. Journal of Petrology 18, 399–430.Google Scholar
  9. Bertrand, P., D. J. Ellis & D. H. Green 1989. Stabilité des assemblages Sa-Qz et Hy-Sil-Qz dans le système FMAS, sous faible P h2o et f o2. Comptes Rendus de l’Académie des Sciences, Paris, Série II 308, 1437–42.Google Scholar
  10. Burt, D. M. 1971. Multisystems analysis of the relative stabilities of babingtonite and ilvaite. Carnegie Institution of Washington Yearbook 70, 189–97.Google Scholar
  11. Caporuscio, F. A. & S. A. Morse 1978. Occurrence of sapphirine plus quartz at Peekskill, New York. American Journal of Science 278, 1334–42.CrossRefGoogle Scholar
  12. Carswell, D. A. & S. L. Harley 1989. Mineral thermometry-barometry. In Eclogite facies rocks, D. A. Carswell (ed.), Ch. 3. Glasgow: Blackie.Google Scholar
  13. Chatterjee, N. D. & W. Schreyer 1972. The reaction enstatitess + sillimanite ⇋ sapphiriness + quartz in the system MgO-Al2O3-SiO2. Contributions to Mineralogy and Petrology 36, 49–62.CrossRefGoogle Scholar
  14. Droop, G. T. R. & K. Bucher-Nurminen 1984. Reaction textures and metamorphic evolution of sapphirine bearing granulites from the Gruf complex, Italian Central Alps. Journal of Petrology 25, 766–803.Google Scholar
  15. Ellis, D. J. 1980. Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica: P-T conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust. Contributions to Mineralogy and Petrology 74, 201–10.CrossRefGoogle Scholar
  16. Ellis, D. J. 1983. The Napier and Rayner Complexes of Enderby Land Antarctica: contrasting styles of metamorphism and tectonism. In Antarctic Earth Science, R. L. Oliver, P. R. James & J. B. Jago (eds), 20–4. Canberra and Cambridge: Cambridge University Press.Google Scholar
  17. Ellis, D. J. 1986. Garnet-liquid Fe2+-Mg equilibria and implications for the beginning of melting in the crust and subduction zones. American Journal of Science 286, 765–91.CrossRefGoogle Scholar
  18. Ellis, D. J., J. W. Sheraton, R. N. England & W. B. Dallwitz 1980. Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica — mineral assemblages and reactions. Contributions to Mineralogy and Petrology 72, 123–43.CrossRefGoogle Scholar
  19. Finger, L. W. & D. M. Burt 1972. REACTION, a FORTRAN IV computer program to balance chemical reactions. Carnegie Institution of Washington Yearbook 71, 616–20.Google Scholar
  20. Grant, J. A. 1985. Phase equilibria in partial melting of pelitic rocks. In Migmatites, J. R. Ashworth (ed.), 86–144. Glasgow: Blackie.CrossRefGoogle Scholar
  21. Greenwood, H. J. 1975. Buffering of pore fluids by metamorphic reactions. American Journal of Science 275, 573–93.CrossRefGoogle Scholar
  22. Grew, E. S. 1981. Granulite facies metamorphism at Molodezhnaya Station, East Antarctica. Journal of Petrology 22, 297–336.Google Scholar
  23. Guo, Q. T. 1984. Topological relations in multisystems of more than n + 3 phases. Journal of Metamorphic Geology 2, 267–95.CrossRefGoogle Scholar
  24. Harley, S. L. 1984a. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contributions to Mineralogy and Petrology 86, 359–73.CrossRefGoogle Scholar
  25. Harley, S. L. 1984b. The solubility of alumina in orthopyroxene coexisting with garnet in FeO-MgO-Al2O3-SiO2 and CaO-FeO-MgO-Al2O3-SiO2. Journal of Petrology 25, 665–96.Google Scholar
  26. Harley, S. L. 1985. Garnet-orthopyroxene bearing granulites from Enderby Land, Antarctica: metamorphic pressure-temperature-time evolution of the Archaean Napier Complex. Journal of Petrology 26, 819–56.Google Scholar
  27. Harley, S. L. 1986. A sapphirine-cordierite-garnet-sillimanite granulite from Enderby Land, Antarctica: implications for FMAS petrogenetic grids in the granulite facies. Contributions to Mineralogy and Petrology 94, 452–60.CrossRefGoogle Scholar
  28. Harley, S. L. 1987. Metamorphic evolution of granulites from the Rauer Group, East Antarctica: decompression following Proterozoic collision. In Abstracts 5th International Symposium on Antarctic Earth Science, Cambridge 1987, p. 61.Google Scholar
  29. Harte, B. & N. F. C. Hudson 1979. Pelite facies series and the temperatures and pressures of Dalradian metamorphism. In The Caledonides of the British Isles — reviewed, A. L. Harris, C. H. Holland & B. E. Leake (eds), 323–37. Geological Society of London Special Publication 8.Google Scholar
  30. Hensen, B. J. 1971.”Theoretical phase relations involving cordierite and garnet in the system MgO-FeO-Al2O3-SiO2. Contributions to Mineralogy and Petrology 33, 191–214.CrossRefGoogle Scholar
  31. Hensen, B. J. 1972. Phase relations involving pyrope, enstatite and sapphirine in the system MgO-Al2O3-SiO2. Carnegie Institution of Washington Yearbook 71, 421–427.Google Scholar
  32. Hensen, B. J. 1983. Theoretical phase relations of ferromagnesian minerals in the silica-undersaturated part of the system FeO-MgO-Al2O3-SiO2 (FMAS), KFMASH (additional H2O) for aluminous high grade amphibolites and granulites. Geological Society of Australia Abstract Series 9, 63–4.Google Scholar
  33. Hensen, B. J. 1986. Theoretical phase relations involving cordierite and garnet revisited: the influence of oxygen fugacity on the stability of sapphirine and spinel in the system Mg-Fe-Al-Si-O. Contributions to Mineralogy and Petrology 92, 362–7.CrossRefGoogle Scholar
  34. Hensen, B. J. 1987. P-T grids for silica-undersaturated granulites in the system MAS (n + 4) and FMAS (n + 3): tools for the derivation of P-T paths of metamorphism. Journal of Metamorphic Geology 5, 255–71.CrossRefGoogle Scholar
  35. Hensen, B. J. 1988. Chemical potential diagrams and chemographic projections: application to sapphirine granulites from Kiranur and Ganguvarpatti. Evidence for rapid uplift in part of the South Indian Shield? Neues Jahrbuch für Mineralogie, Abhandlungen 158, 193–210.Google Scholar
  36. Hensen, B. J. & E. J. Essene 1971. Stability of pyrope-quartz in the system MgO-Al2O3-SiO2. Contributions to Mineralogy and Petrology 30, 72–83.CrossRefGoogle Scholar
  37. Hensen, B. J. & D. H. Green 1971. Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. I. Compositions with excess aluminosilicate. Contributions to Mineralogy and Petrology 33, 309–30.CrossRefGoogle Scholar
  38. Hensen, B. J. & D. H. Green 1972. Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. II. Compositions without excess aluminosilicate. Contributions to Mineralogy and Petrology 35, 331–54.CrossRefGoogle Scholar
  39. Hensen, B. J. & D. H. Green 1973. Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. III. Synthesis of experimental data and geological applications. Contributions to Mineralogy and Petrology 38, 151–66.CrossRefGoogle Scholar
  40. Hensen, B. J. & R. G. Warren 1983. Kornerupine-sapphirine-granulites from the western Harts Ranges, Arunta Block. Geological Society of Australia, Abstract Series 9, 70–2.Google Scholar
  41. Hensen, B. J. & R. G. Warren 1984. Fluid evolution in granulites from the Arunta Block, Central Australia. Geological Society of Australia, Abstract Series 12, 235–7.Google Scholar
  42. Hess, P. C. 1969. The metamorphic paragenesis of cordierite in pelitic rocks. Contributions to Mineralogy and Petrology 24, 191–207.CrossRefGoogle Scholar
  43. Holdaway, M. J. & S. M. Lee 1977. Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical and natural observations. Contributions to Mineralogy and Petrology 63, 175–98.CrossRefGoogle Scholar
  44. Karsakov, L. P., V. I. Shuldiner & A. M. Lennikov 1975. Granulite complex of the eastern part of the Stanovoy Fold Province and the Chogar facies of depth. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya 85, 47–61 [in Russian].Google Scholar
  45. Korzhinskii, D. S. 1959. Physicochemical basis of analysis of the paragenesis of minerals. New York: Consultants Bureau, Inc. (English translation).Google Scholar
  46. Lal, R. K., D. Ackermand, P. Raith, P. Raase& F. Seifert 1984. Sapphirine-bearing assemblages from Kiranur, southern India: a study of chemographic relationships in the Na2O-FeO-MgO-Al2O3-SiO2-H2O system. Neues Jahrbuch für Mineralogie Abhandlungen 150, 121–52.Google Scholar
  47. Lal, R. K., D. Ackermand & H. Upadhyay 1987. P-T-X relationships deduced from corona textures in sapphirine-spinel-quartz assemblages from Paderu, southern India. Journal of Petrology 28, 1139–68.Google Scholar
  48. Lee, H. Y. & J. Ganguly 1988. Equilibrium compositions of coexisting garnet and orthopyroxene: experimental determinations in the system FeO-MgO-Al2O3-SiO2, and applications. Journal of Petrology 29, 93–113.Google Scholar
  49. Marakushev, A. A. & V. A. Kudryavtsev 1965. Hypersthene-sillimanite paragenesis and its petrological implication. Doklady Akademii Nauk SSSR, Earth Science Sections 164, 179–182 (English translation 1966, pp. 145–8).Google Scholar
  50. Mohan, A., D. Ackermand & R. K. Lal 1986. Reaction textures and P-T-X trajectory in the sapphirine-spinel-bearing granulites from Ganguvarpatti, Southern India. Neues Jahrbuch für Mineralogie Abhandlungen 154, 1–19.Google Scholar
  51. Montel, J. M., C. Weber & M. Pichavant 1986. Biotite-sillimanite-spinel assemblages in high-grade metamorphic rocks: occurrences, chemographic analysis and thermobarometric interest. Bulletin de Minéralogie 109, 555–73.Google Scholar
  52. Newton, R. C. 1972. An experimental determination of the high-pressure stability limits of magnesian cordierite under wet and dry conditions. Journal of Geology 80, 398–420.CrossRefGoogle Scholar
  53. Niggli, P. 1954. Rocks and mineral deposits. New York: W. H. Freeman.Google Scholar
  54. Pattison, D. & B. Harte 1985. A petrogenetic grid for pelites in the Ballachulish and other Scottish thermal aureoles. Journal of the Geological Society of London 142, 7–28.CrossRefGoogle Scholar
  55. Pattison, D. R. M. & B. Harte, in press. Petrography and mineral chemistry of metapelites in the Ballachulish aureole. In Equilibrium and kinetics in contact metamorphism: the Ballachulish igneous complex and its aureole, G. Voll, J. Topel, D. R. M. Pattison & F. Seifert, (eds), Berlin: Springer-Verlag.Google Scholar
  56. Powell, R. 1983. Fluids and melting under upper amphibolite facies conditions. Journal of the Geological Society of London 140, 629–33.CrossRefGoogle Scholar
  57. Powell, R. & M. Sandiford 1988. Sapphirine and spinel phase relationships in the system FeO-MgO-Al2O3-SiO2-TiO2-O2 in the presence of quartz and hypersthene. Contributions to Mineralogy and Petrology 98, 64–71.CrossRefGoogle Scholar
  58. Ramberg, H. 1964. Chemical thermodynamics in mineral studies. In Physics and chemistry of the Earth, Vol. 5, L. H. Ahrens, F. Press & S. K. Runcorn (eds), 225–53. Oxford: Pergamon.Google Scholar
  59. Richardson, S. W. 1968. Staurolite stability in a part of the system Fe-Al-Si-O-H. Journal of Petrology 9, 467–88.Google Scholar
  60. Robie, R. A., P. M. Bethke & K. M. Beardsley 1967. Selected X-ray crystallographic data, molar volumes and densities of minerals and related substances. U.S. Geological Survey, Bulletin 1248.Google Scholar
  61. Sandiford, M., F. B. Neall & R. Powell 1987. Metamorphic evolution of aluminous granulites from Labwor Hills, Uganda. Contributions to Mineralogy and Petrology 95, 217–25.CrossRefGoogle Scholar
  62. Schenk, V. 1984. Petrology of felsic granulites, metapelites, metabasics, ultramafics and metacarbonates from southern Calabria (Italy): prograde metamorphism uplift and cooling of a former lower crust. Journal of Petrology 25, 255–98.Google Scholar
  63. Schumacher, J. C. & P. Robinson 1987. Mineral chemistry and metasomatic growth of aluminous enclaves in gedrite-cordieritegneiss from southwestern New Hampshire, USA. Journal of Petrology 28, 1033–73.Google Scholar
  64. Stuwe, K. & R. Powell 1989. Low-pressure granulite facies metamorphism in the Larsemann Hills area, East Antarctica; petrology and tectonic implications for the evolution of the Prydz Bay area. Journal of Metamorphic Geology 7, 465–83.CrossRefGoogle Scholar
  65. Thompson, A. B. 1976. Mineral reactions in pelitic rocks: I. Prediction of P-T-X (Fe-Mg) phase relations. II. Calculation of some P-T-X (Fe-Mg) phase relations. American Journal of Science 276, 401–54.CrossRefGoogle Scholar
  66. Thompson, A. B. 1982. Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. American Journal of Science 282, 1567–95.CrossRefGoogle Scholar
  67. Thompson, J. B. Jr 1955. The thermodynamic basis for the mineral facies concept. American Journal of Science 253, 65–103.CrossRefGoogle Scholar
  68. Thompson, J. B. Jr 1957. The graphical analysis of mineral assemblages in pelitic schists. American Mineralogist 42, 842–59.Google Scholar
  69. Vielzeuf, D. 1983. The spinel and quartz associations in high grade xenoliths from Tallante (SE Spain) and their potential use in geothermometry and barometry. Contributions to Mineralogy and Petrology 82, 301–11.CrossRefGoogle Scholar
  70. Vielzeuf, D. & P. Boivin 1984. An algorithm for the construction of petrogenetic grids — application to some equilibria in granulitic paragneisses. American Journal of Science 284, 760–91.CrossRefGoogle Scholar
  71. Vielzeuf, D. & J. R. Holloway 1988. Experimental determination of the fluid-absent melting relations in the pelitic system: consequences for crustal differentiation. Contributions to Mineralogy and Petrology 98, 257–76.CrossRefGoogle Scholar
  72. Warren, R. G. 1983. Prograde and retrograde sapphirine in metamorphic rocks of the Central Arunta Block, Central Australia. BMR Journal of Australian Geology and Geophysics 8, 139–45.Google Scholar
  73. Waters, D. J. 1988. Partial melting and the formation of granulite facies assemblages in Namaqualand, South Africa. Journal of Metamorphic Geology 6, 387–404.CrossRefGoogle Scholar
  74. Watts, B. J. 1974. Fluid-bearing and fluid-absent invariant points in the system CaO-MgO-Al2O3-CO2-H2O for a greenschist facies assemblage: a correction and some further implications. Contributions to Mineralogy and Petrology 47, 153–64.CrossRefGoogle Scholar
  75. Zen, E-An 1966. Construction of pressure-temperature diagrams for multicomponent systems after the method of Schreinemakers — a geometric approach. U.S. Geological Survey, Bulletin 1225, 56 pp.Google Scholar

Copyright information

© J.R. Ashworth, M. Brown & contributors 1990

Authors and Affiliations

  • B. J. Hensen
  • S. L. Harley

There are no affiliations available

Personalised recommendations