Advertisement

Archaean and Proterozoic high-grade terranes of East Antarctica (40–80°E): a case study of diversity in granulite facies metamorphism

  • S. L. Harley
  • B. J. Hensen
Chapter
Part of the The Mineralogical Society Series book series (MIBS, volume 2)

Abstract

In recent years there has been a tendency for workers in high-grade terranes to seek and identify unified and somewhat generalized models for the origin of granulites, usually based on observations in classic terranes such as the Adirondacks (Bohlen 1987) and southern India (e.g. Newton et al. 1980, Hansen et al. 1984). In particular, some studies have emphasized a perceived uniformity in granulite P-T conditions and P-T-t (pressure-temperature-time) paths (Newton & Perkins 1982, Bohlen 1987), and hence have modelled granulite terranes in terms of one particular tectonic setting such as a mag-matic arc. In contrast, Harley (1989a) has emphasized diversity in the important features of granulite terranes, most notably in their P-T conditions of formation and P-T-t paths but also in their lithological constitution and age structures, and has considered a spectrum of possible tectonic settings and mechanisms for granulite formation.

Keywords

Shear Zone Mafic Dyke Mafic Granulite Granulite Metamorphism Isobaric Cool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albarède, F. 1976. Thermal models of post-tectonic decompression as exemplified by the Haut-Allier granulites (Massif Central, France). Bulletin de la Société Géologique de France 18, 1023–32.Google Scholar
  2. Aranovich, L. Ya. & K. K. Podlesskii 1989. Geothermobarometry of high grade metapelites: simultaneously operating reactions. In Evolution of met amorphic belts, J. S. Daly, R. A. Cliff & B. W. D. Yardley (eds), (in press). Geological Society of London, Special Publication.Google Scholar
  3. Bertrand, P., D. J. Ellis & D. H. Green 1989. Stabilité des assemblages Sa-Qz et Hy-Sil-Qz dans le système FMAS, sous faible P h2o et f O2. Comptes Rendus de l’Académie des Sciences, Série II 308, 1437–42.Google Scholar
  4. Black, L. P., J. D. Fitzgerald & S. L. Harley 1984. Pb isotopic composition, colour, and microstructure of monazites from a polymetamorphic rock in Antarctica. Contributions to Mineralogy and Petrology 85, 141–8.CrossRefGoogle Scholar
  5. Black, L. P., S. L. Harley, S. S. Sun & M. T. McCulloch 1987. The Rayner Complex of East Antarctica: complex isotopic systematics within a Proterozoic mobile belt. Journal of Metamorphic Geology 5, 1–26.CrossRefGoogle Scholar
  6. Black, L. P. & P. R. James 1983. Geological history of the Archaean Napier Complex of Enderby Land. In Antarctic Earth science, R. L. Oliver, P. R. James & J. B. Jago (eds), 11–15. Canberra: Australian Academy of Science.Google Scholar
  7. Black, L. P., P. R. James & S. L. Harley 1983a. The geochronology, structure, and metamorphism of early Archaean rocks at Fyfe Hills, Enderby Land, Antarctica. Precambrian Research 21, 197–222.CrossRefGoogle Scholar
  8. Black, L. P., P. R. James & S. L. Harley 1983b. Geochronology and geological evolution of metamorphic rocks in the Field Islands area, East Antarctica. Journal of Metamorphic Geology 1, 277–303.CrossRefGoogle Scholar
  9. Black, L. P., J. W. Sheraton & P. R. James 1986a. Late Archaean granites of the Napier Complex, Enderby Land, Antarctica: a comparison of Rb-Sr, Sm-Nd, and U-Pb isotopic systematics in a complex terrain. Precambrian Research 32, 343–68.CrossRefGoogle Scholar
  10. Black, L. P., I. S. Williams & W. Compston 1986b. Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica. Contributions to Mineralogy and Petrology 94, 427–37.CrossRefGoogle Scholar
  11. Bohlen, S. R. 1987. Pressure-temperature-time paths and a tectonic model for the evolution of granulites. Journal of Geology 95, 617–32.CrossRefGoogle Scholar
  12. Chappell, B. W. & A. J. R. White 1974. Two contrasting granite types. Pacific Geology 8, 173–4.Google Scholar
  13. Clarke, G. L. 1987. Structural constraints on the Proterozoic reworking of Archaean crust in the Rayner Complex, MacRobertson and Kemp Land Coast, East Antarctica. Abstracts, 5th International Symposium on Antarctic Earth Science, Cambridge, p. 29.Google Scholar
  14. Clarke, G. L. 1988. Structural constraints on the Proterozoic reworking of Archaean crust in the Rayner Complex, MacRobertson and Kemp Land Coast, East Antarctica. Precambrian Research 40–41, 137–56.CrossRefGoogle Scholar
  15. Collerson, K. D., E. Reid, D. Millar & M. T. McCulloch 1983. Lithological and Sr-Nd isotopic relationships in the Vestfold block: implications for Archaean and Proterozoic crustal evolution in the east Antarctic. In Antarctic Earth science, R. L. Oliver, P. R. James & J. B. Jago (eds), 77–84. Canberra: Australian Academy of Science.Google Scholar
  16. Collerson, K. D. & J. W. Sheraton 1986a. Bedrock geology and crustal evolution of the Vestfold Hills. In Antarctic oasis: terrestrial environments and history of the Vestfold Hills, J. Pickard (ed.), 21–62. Sydney: Academic Press.Google Scholar
  17. Collerson, K. D. & J. W. Sheraton 1986b. Age and geochemical characteristics of a mafic dyke swarm in the Archaean Vestfold Block, Antarctica: inferences about Proterozoic dyke emplacement in Gondwana. Journal of Petrology 27, 853–86.Google Scholar
  18. Collins, W. J., S. D. Beams, A. J. R. White & B. W. Chappell 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy & Petrology 80, 189–200.CrossRefGoogle Scholar
  19. Compston, W. & I. S. Williams 1982. Protolith ages from inherited zircon cores measured by a high mass resolution ion microprobe. Fifth International Conference on Geochronology, Cosmochronology and Isotope Geology, Nikko, Japan, 63–4 (abstract).Google Scholar
  20. Dallwitz, W. B. 1968. Coexisting sapphirine and quartz in granulite from Enderby Land, Antarctica. Nature 219, 476–7.CrossRefGoogle Scholar
  21. Ellis, D. J. 1980. Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica: P—T conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust. Contributions to Mineralogy and Petrology 74, 201–10.CrossRefGoogle Scholar
  22. Ellis, D. J. 1983. The Napier and Rayner Complexes of Enderby Land, Antarctica: Contrasting styles of metamorphism and tectonism. In Antarctic Earth science, R. L. Oliver, P. R. James & J. B. Jago (eds), 20–4. Canberra: Australian Academy of Science.Google Scholar
  23. Ellis, D. J. 1987. Origin and evolution of granulites in normal and thickened crusts. Geology 15, 167–70.CrossRefGoogle Scholar
  24. Ellis, D. J. & D. H. Green 1985. Garnet-forming reactions in mafic granulites from Enderby Land, Antarctica — implications for geothermometry and geobarometry. Journal of Petrology 26, 633–62.Google Scholar
  25. Ellis, D. J., J. W. Sheraton, R. N. England & W. B. Dallwitz 1980. Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica — mineral assemblages and reactions. Contributions to Mineralogy and Petrology 72, 123–43.CrossRefGoogle Scholar
  26. England, P. C. 1987. Diffuse continental deformation: length scales, rates and metamorphic evolution. Philosophical Transactions of the Royal Society of London A321, 3–22.Google Scholar
  27. England, P. C. & A. B. Thompson 1984. Pressure-temperature-time paths of regional metamorphism, I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology 25, 894–928.Google Scholar
  28. England, P. C. & A. B. Thompson 1986. Some thermal and tectonic models for crustal melting in continental collision zones. In Collisional tectonics, M. P. Coward & A. C. Ries (eds), 83–94. Geological Society of London, Special Publication 19.Google Scholar
  29. Green, D. H. & A. E. Ringwood 1967. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica et Cosmochimica Acta 31, 767–833.CrossRefGoogle Scholar
  30. Grew, E. S. 1978. Precambrian basement at Molodezhnaya station, East Antarctica. Geological Society of America Bulletin 89, 801–13.CrossRefGoogle Scholar
  31. Grew, E. S. 1980. Sapphirine + quartz association from Archean rocks in Enderby Land, Antarctica. American Mineralogist 65, 821–36.Google Scholar
  32. Grew, E. S. 1981a. Surinamite, taaffeite, and beryllian sapphirine from pegmatites in granulite-facies rocks of Casey Bay, Enderby Land, Antarctica. American Mineralogist 66, 1022–33.Google Scholar
  33. Grew, E. S. 1981b. Granulite facies metamorphism at Molodezhnaya Station, East Antarctica. Journal of Petrology 22, 297–336.Google Scholar
  34. Grew, E. S. 1982. Osumilite in the sapphirine-quartz terrane of Enderby Land, Antarctica: implications for osumilite petrogenesis in the granulite facies. American Mineralogist 67, 762–87.Google Scholar
  35. Grew, E. S. & W. I. Manton 1979. Archean rocks in Antarctica: 2.5-billion-year uranium-lead ages of pegmatites in Enderby Land. Science 206, 443–5.CrossRefGoogle Scholar
  36. Griffin, W. L. & S. Y. O’Reilly 1986. The lower crust in eastern Australia: xenolith evidence. In The nature of the lower continental crust, J. B. Dawson, D. A. Carswell, J. Hall & K. H. Wedepohl (eds), 363–74. Geological Society of London, Special Publication 24.Google Scholar
  37. Hansen, E. C, R. C. Newton & A. S. Janardhan 1984. Fluid inclusions in rocks from the amphibolite-facies gneiss to charnockite progression in southern Karnataka, India: direct evidence concerning the fluids of granulite metamorphism. Journal of Metamorphic Geology 2, 249–64.CrossRefGoogle Scholar
  38. Harley, S. L. 1981. Garnet-orthopyroxene assemblages as pressure-temperature indicators. Unpubl. PhD thesis, University of Tasmania, 365 pp.Google Scholar
  39. Harley, S. L. 1983. Regional geobarometry — geothermometry and metamorphic evolution of Enderby Land, Antarctica. In Antarctic Earth science, R. L. Oliver, P. R. James & J. B. Jago (eds), 25–30. Canberra: Australian Academy of Science.Google Scholar
  40. Harley, S. L. 1985a. Garnet-orthopyroxene bearing granulites from Enderby Land, Antarctica: metamorphic pressure-temperature-time evolution of the Archaean Napier Complex. Journal of Petrology 26, 819–56.Google Scholar
  41. Harley, S. L. 1985b. Paragenetic and mineral-chemical relationships in orthoamphibole-bearing gneisses from Enderby Land, East Antarctica: a record of Proterozoic uplift. Journal of Metamorphic Geology 3, 179–200.CrossRefGoogle Scholar
  42. Harley, S. L. 1986. A sapphirine-cordierite-garnet-sillimanite granulite from Enderby Land, Antarctica: implications for FMAS petrogenetic grids in the granulite facies. Contributions to Mineralogy and Petrology 94, 452–60.CrossRefGoogle Scholar
  43. Harley, S. L. 1987a. A pyroxene-bearing meta-ironstone and other pyroxene-granulites from Tonagh Island, Enderby Land, Antarctica: further evidence for very high temperature (>980°C) Archaean regional metamorphism in the Napier Complex. Journal of Metamorphic Geology 5, 341–56.CrossRefGoogle Scholar
  44. Harley, S. L. 1987b. Archaean sapphirine granulites from the Vestfold Hills. In Abstracts, 5th International Symposium on Antarctic Earth Science, Cambridge, p. 150.Google Scholar
  45. Harley, S. L. 1987c. Precambrian geological relationships in high-grade gneisses of the Rauer Islands, East Antarctica. Australian Journal of Earth Sciences 34, 175–207.CrossRefGoogle Scholar
  46. Harley, S. L. 1987d. Metamorphic evolution of granulites from the Rauer Group, East Antarctica: decompression following Proterozoic collision. In Abstracts, 5th International Symposium on Antarctic Earth Science, Cambridge, p. 61.Google Scholar
  47. Harley, S. L. 1988. Proterozoic granulites from the Rauer Group, East Antarctica. I. Decompressional pressure-temperature paths deducted from mafic and felsic gneisses. Journal of Petrology 29, 1059–95.Google Scholar
  48. Harley, S. L. 1989a. The origins of granulites: a metamorphic perspective. Geological Magazine 126, 215–47.CrossRefGoogle Scholar
  49. Harley, S. L. 1989b. The crustal evolution of some East Antarctic granulites. In Antarctic Earth science, M. R. A. Thompson (ed.), In press. Cambridge: Cambridge University Press.Google Scholar
  50. Harley, S. L. 1989c. Metamorphic evolution of granulites from the Rauer Islands, East Antarctica: decompression following Proterozoic collision. In Antarctic Earth science, M. R. A. Thompson (ed.), in press. Cambridge: Cambridge University Press.Google Scholar
  51. Harley, S. L. & L. P. Black 1987. The Archaean geological evolution of Enderby Land, Antarctica. In Evolution of the Lewisian and comparable Precambrian high-grade terrains, R. G. Park & J. Tarney (eds), 285–96. Geological Society of London, Special Publication 27.Google Scholar
  52. Hensen, B. J. 1986. Theoretical phase relations involving garnet and cordierite revisited: the influence of oxygen fugacity on the stability of sapphirine and spinel in the system Mg-Fe-Al-Si-O. Contributions to Mineralogy and Petrology 92, 362–7.CrossRefGoogle Scholar
  53. Hensen, B. J. 1987. P- T grids for silica-undersaturated granulites in the system MAS (n + 4) and FMAS (n + 3) — tools for the derivation of P-T-t paths of metamorphism. Journal of Metamorphic Geology 5, 255–71.CrossRefGoogle Scholar
  54. Hensen, B. J. & D. H. Green 1973. Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. III. Synthesis of experimental data and geological applications. Contributions to Mineralogy and Petrology 38, 151–66.CrossRefGoogle Scholar
  55. Hensen, B. J. & Y. Motoyoshi 1988. Sapphirine-quartz-orthopyroxene symplectites after cordierite in granulites from the Napier Complex, Antarctica: evidence for a counterclockwise P-T path? (Abstract) Terra Cognita 8, 263.Google Scholar
  56. Hiroi, Y., K. Shiraishi, Y. Nakai, T. Kano & S. Yoshikura 1983a. Geology and petrology of the Prince Olav Coast, East Antarctica. In Antarctic Earth science, R. L. Oliver, P. R. James & J. B. Jago (eds), 32–5. Canberra: Australian Academy of Sciences.Google Scholar
  57. Hiroi, Y., K. Shiraishi, K. Yanai & K. Kizaki 1983b. Aluminum silicates in the Prince Olav and Soya Coasts, East Antarctica. Memoirs of the National Institute of Polar Research (Japan), special issue 28, 115–31.Google Scholar
  58. Hiroi, Y., K. Shiraishi, Y. Motoyoshi, S. Kanisawa, K. Yanai & K. Kizaki 1986. Mode of occurrence, bulk chemical compositions, and mineral textures of ultramafic rocks in the Lutzow-Holm Complex, East Antarctica. Memoirs of the National Institute of Polar Research (Japan), Special Issue 43, 62–84.Google Scholar
  59. Hiroi, Y., K. Shiraishi, Y. Motoyoshi & T. Katsushima 1987. Progressive metamorphism of calc-silicate rocks from the Prince Olav and Soya Coasts, East Antarctica. Proceedings of the National Institute of Polar Research (Japan), Symposium on Antarctic Geoscience 1, 73–97.Google Scholar
  60. Hölscher, A., W. Schreyer & D. Lattard 1986. High-pressure, high-temperature stability of surinamite in the system MgO-BeO-Al2O3-SiO2-H2O. Contributions to Mineralogy and Petrology 92, 113–27.CrossRefGoogle Scholar
  61. Ito, K. & G. C. Kennedy 1971. An experimental study of the basalt-garnet granulite-eclogite transition. In The structure and physical properties of the Earth’s crust, J. G. Heacock (ed.), 303–14. American Geophysical Union Monograph 14.CrossRefGoogle Scholar
  62. James, P. R. & L. P. Black 1981. A review of the structural evolution and geochronology of the Archaean Napier Complex of Enderby Land, Australian Antarctic Territory. Geological Society of Australia Special Publication 7, 71–83.Google Scholar
  63. James, P. R., P. Ding & L. Rankin 1987. Structural geology of the early Precambrian gneisses of northern Fold Island, Mawson Coast, Kemp Land, East Antarctica. Abstracts, 5th International Symposium on Antarctic Earth Science, Cambridge, p. 76.Google Scholar
  64. James, P. R. & R. Tingey 1983. The Precambrian geological evolution of the East Antarctic metamorphic shield — a review. In Antarctic Earth science, R. L. Oliver, P. R. James & J. B. Jago (eds), 5–10. Canberra: Australian Academy of Sciences.Google Scholar
  65. Kuehner, S. 1986. Mafic dykes of the East Antarctic shield; experimental, geochemical and petrological studies focussing on the Proterozoic evolution of the crust and mantle. Unpubl. PhD thesis, University of Tasmania.Google Scholar
  66. Kuehner, S. M. & D. H. Green 1987. Uplift history of the East Antarctic Shield: constraints imposed by high-pressure experimental studies of Proterozoic mafic dykes. Abstracts, 5th International Symposium on Antarctic Earth Science, Cambridge, p. 84.Google Scholar
  67. Motoyoshi, Y. & H. Matsueda 1984. Archaean granulites from Mt Riiser-Larsen in Enderby Land, East Antarctica. Memoirs of the National Institute of Polar Research, Japan, special issue 33, 103–25.Google Scholar
  68. Motoyoshi, Y., S. Matsubara & H. Matsueda 1987. Progressive prograde metamorphism of the Lutzow-Holm Bay region, East Antarctica. Abstracts, 5th International Symposium on Antarctic Earth Science. Cambridge, p. 100.Google Scholar
  69. Newton, R. C. & D. Perkins III 1982. Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene-(clinopyroxene)-quartz. American Mineralogist 67, 203–22.Google Scholar
  70. Newton, R. C., J. V. Smith & B. F. Windley 1980. Carbonic metamorphism, granulites, and crustal growth. Nature 288, 45–50.CrossRefGoogle Scholar
  71. Phillips, G. N. & V. J. Wall 1981. Evaluation of prograde regional metamorphic conditions: their implications for the heat source and water activity during metamorphism in the Willyama Complex, Broken Hill, Australia. Bulletin de Minéralogie 104, 801–10.Google Scholar
  72. Ravich, M. G. & E. N. Kamenev 1975. Crystalline basement of the Antarctic Platform. New York: Wiley.Google Scholar
  73. Sandiford, M. A. 1985a. The metamorphic evolution of granulites at Fyfe Hills: implications for Archaean crustal thickness in Enderby Land, Antarctica. Journal of Metamorphic Geology 3, 155–78.CrossRefGoogle Scholar
  74. Sandiford, M. A. 1985b. The origin of retrograde shear zones in the Napier Complex: implications for the tectonic evolution of Enderby Land, Antarctica. Journal of Structural Geology 7, 477–88.CrossRefGoogle Scholar
  75. Sandiford, M. & R. Powell 1986a. Pyroxene exsolution in granulites from Fyfe Hills, Enderby Land, Antarctica: evidence for 1000°C metamorphic temperatures in Archean continental crust. American Mineralogist 71, 946–54.Google Scholar
  76. Sandiford, M. A. & R. Powell 1986b. Deep crustal metamorphism during continental extension: modern and ancient examples. Earth and Planetary Science Letters 79, 151–8.CrossRefGoogle Scholar
  77. Sandiford, M. A. & C. J. L. Wilson 1983. The geology of the Fyfe Hills-Khmara Bay region, Enderby Land. In Antarctic Earth science, R. L. Oliver, P. R. James & J. B. Jago (eds), 16–19. Canberra: Australian Academy of Science.Google Scholar
  78. Sandiford, M. A. & C. J. L. Wilson 1984. The structural evolution of the Fyfe Hills-Khmara Bay region, Enderby Land, East Antarctica. Australian Journal of Earth Sciences 31, 403–26.CrossRefGoogle Scholar
  79. Sandiford, M. A. & C. J. L. Wilson 1986. The origin of Archaean gneisses in the Fyfe Hills region, Enderby Land: field occurrence, petrography and geochemistry. Precambrian Research 31, 37–68.CrossRefGoogle Scholar
  80. Segnit, E. R. 1957. Sapphirine-bearing rocks from MacRobertson Land, Antarctica. Mineralogical Magazine 31, 690–7.CrossRefGoogle Scholar
  81. Sheraton, J. W. & L. P. Black 1981. Geochemistry and geochronology of Proterozoic tholeiite dykes of East Antarctica: evidence for mantle metasomatism. Contributions to Mineralogy and Petrology 78, 305–17.CrossRefGoogle Scholar
  82. Sheraton, J. W. & L. P. Black 1983. Geochemistry of Precambrian gneisses: relevance for the evolution of the East Antarctic shield. Lithos 16, 273–96.CrossRefGoogle Scholar
  83. Sheraton, J. W. & L. P. Black 1988. Chemical evolution of granitic rocks of the East Antarctic shield, with particular reference to post-orogenic granites. Lithos 21, 37–52.CrossRefGoogle Scholar
  84. Sheraton, J. W., L. P. Black & M. T. McCulloch 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Archaean continental crust in east Antarctica. Precambrian Research 26, 169–98.CrossRefGoogle Scholar
  85. Sheraton, J. W. & K. D. Collerson 1983. Archaean and Proterozoic geological relationships in the Vestfold Hills-Prydz Bay area, Antarctica. BMR Journal of Australian Geology and Geophysics 8, 119–28.Google Scholar
  86. Sheraton, J. W. & K. D. Collerson 1984. Geochemical evolution of Archaean granulite-facies gneisses of the Vestfold Block and comparisons with other Archaean gneiss complexes in the East Antarctic Shield. Contributions to Mineralogy and Petrology 87, 51–64.CrossRefGoogle Scholar
  87. Sheraton, J. W., R. N. England & D. J. Ellis 1982. Metasomatic zoning in sapphirine-bearing granulites from Antarctica. BMR Journal of Australian Geology and Geophysics 7, 269–73.Google Scholar
  88. Sheraton, J. W., D. J. Ellis & S. M. Kuehner 1985. Rare-earth element geochemistry of Archaean orthogneisses and evolution of the East Antarctic shield. BMR Journal of Australian Geology and Geophysics 9, 207–18.Google Scholar
  89. Sheraton, J. W., L. A. Offe, R. J. Tingey & D. J. Ellis 1980. Enderby Land, Antarctica — an unusual Precambrian high grade metamorphic terrain. Journal of the Geological Society of Australia 27, 1–18.CrossRefGoogle Scholar
  90. Sheraton, J. W., R. J. Tingey, L. P. Black, L. A. Offe & D. J. Ellis 1987. Geology of Enderby Land and Western Kemp Land, Antarctica. Australian Bureau of Mineral Resources Bulletin 223, 51pp.Google Scholar
  91. Shibata, K., K. Yanai & K. Shiraishi 1986. Rb-Sr whole-rock ages of metamorphic rocks from eastern Queen Maud Land, East Antarctica. Memoirs of the National Institute of Polar Research (Japan), special issue 43, 133–48.Google Scholar
  92. Shiraishi, K., Y. Hiroi, Y. Motoyoshi & K. Yanai 1987. Plate tectonic development of Late Proterozoic paired metamorphic complexes in Eastern Queen Maud Land, East Antarctica. In Gondwana six: structure, tectonics, and geophysics, G. W. McKenzie (ed.), 309–18. Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
  93. Sonder, L. J., P. C. England, B. P. Wernicke & R. L. Christiansen 1987. A physical model for Cenozoic extension of western North America. In Continental extensional tectonics, M. P. Coward, J. F. Dewey & P. L. Hancock (eds), 187–201. Geological Society of London, Special Publication 28.Google Scholar
  94. Stüwe, K., H.-M. Braun & H. Peer 1989. Geology and structure of the Larsemann Hills area, Prydz Bay, East Antarctica. Australian Journal of Earth Sciences 36, 219–41.CrossRefGoogle Scholar
  95. Stüwe, K. & R. Powell 1989. Low pressure granulite facies metamorphism in the Larsemann Hills area, East Antarctica: petrology and tectonic implications for the evolution of the Prydz Bay area. Journal of Metamorphic Geology 7, 465–83.CrossRefGoogle Scholar
  96. Tait, R. E. & S. L. Harley 1988. Local processes involved in the generation of migmatites within mafic granulites. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 209–22.CrossRefGoogle Scholar
  97. Tingey, R. J. 1981. Geological investigations in Antarctica 1968–1969: the Prydz Bay-Amery Ice Shelf-Prince Charles Mountains area. Bureau of Mineral Resources, Australia, Record, 1981/34.Google Scholar
  98. Thost, D., Y. Motoyoshi & B. J. Hensen 1988. Low pressure granulite metamorphism in the Bolingen Islands, East Antarctica. (Abstract) Terra Cognita 8, 247.Google Scholar
  99. Waters, D. J. 1986. Metamorphic zonation and thermal history of pelitic gneisses from Western Namaqualand, South Africa. Transactions of the Geological Society of South Africa 89, 97–102.Google Scholar
  100. Waters, D. J. 1988. Partial melting and the formation of granulite facies assemblages in Namaqualand, South Africa. Journal of Metamorphic Geology 6, 387–404.CrossRefGoogle Scholar
  101. Wells, P. R. A. 1980. Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. Earth and Planetary Science Letters 46, 253–65.CrossRefGoogle Scholar
  102. Wernicke, B. 1985. Uniform-sense normal simple shear of the continental lithosphère. Canadian Journal of Earth Sciences, 22, 108–25.CrossRefGoogle Scholar
  103. Young, D. N. & D. J. Ellis 1987. Geochemical constraints on the tectonic setting of the Proterozoic mobile belt of East Antarctica. Abstracts, 5th International Symposium on Antarctic Earth Science, Cambridge, p. 173.Google Scholar

Copyright information

© J.R. Ashworth, M. Brown & contributors 1990

Authors and Affiliations

  • S. L. Harley
  • B. J. Hensen

There are no affiliations available

Personalised recommendations