Local, mid-crustal granulite facies metamorphism and melting: an example in the Mount Stafford area, central Australia

  • R. H. Vernon
  • G. L. Clarke
  • W. J. Collins
Part of the The Mineralogical Society Series book series (MIBS, volume 2)


This chapter describes amphibolite to granulite facies regional metamorphism and partial melting that occurred at remarkably low pressure (around 2–4.5 kbar) in a section of Proterozoic crust at c. 1820 Ma ago (Collins et al. 1989b), and discusses processes responsible for unusually high temperatures at such shallow-crustal pressures. A relatively small area (about 260 km2) of low-pressure regional metamorphic rocks (mainly metapelites and metapsammites, with subordinate mafic rocks) occurs in the Mount Stafford region, at the northwestern end of the Anmatjira Range, central Australia (Fig. 11.1). The rocks belong to the Lander Rock Beds of the Proterozoic Arunta Block, and were deposited about 1870 Ma ago, on the basis of correlation with similar rocks of that age in the Warramunga Group of the Devonport Basin (Blake & Page 1988). Primary sedimentary features can be recognized throughout the Mount Stafford area, even in the highest-grade rocks, and the metamorphic isograds appear to cut the near-flat-lying sediments.


Partial Melting Mineral Assemblage Metasedimentary Rock Granulite Facies Axial Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, T. H. & M. J. Rubenach 1983. Sequential porphyroblast growth and crenulation cleavage development during progressive deformation. Tectonophysics 92, 171–94.CrossRefGoogle Scholar
  2. Bird, P. & J. Baumgardner 1981. Steady propagation of delamination events. Journal of Geophysical Research 86, 4891–903.CrossRefGoogle Scholar
  3. Blake, D. H. & R. W. Page 1988. The Proterozoic Davenport Province, central Australia: regional geology and geochronology. Precambrian Research 40/41, 329–40.CrossRefGoogle Scholar
  4. Bohlen, S. R. 1987. Pressure-temperature-time paths and a tectonic model for the evolution of granulites. Journal of Geology 95, 617–32.CrossRefGoogle Scholar
  5. Bosworth, T. O. 1910. Metamorphism around the Ross of Mull Granite. Quarterly Journal of the Geological Society of London 66, 376–96.CrossRefGoogle Scholar
  6. Clarke, D. B., C. B. McKenzie, G. K. Muecke & S. W. Richardson 1976. Magmatic andalusite from the South Mountain batholith, Nova Scotia. Contributions to Mineralogy and Petrology 56, 279–87.CrossRefGoogle Scholar
  7. Clarke, G. L., W. J. Collins & R. H. Vernon 1990. Successive Early Proterozoic metamorphic events in the Anmatjira Range, central Australia. Journal of Metamorphic Geology, in press.Google Scholar
  8. Clarke, G. L., M. Guiraud, R. Powell & J.-P. Burg 1987. Metamorphism in the Olary Block, South Australia: compression with cooling in a Proterozoic fold belt. Journal of Metamorphic Geology 5, 291–306.CrossRefGoogle Scholar
  9. Clarke, G. L. & R. Powell 1990. Proterozoic granulite facies metamorphism in the southeastern Reynolds Range, central Australia: geological context, P-T path, and overprinting relationships. Journal of Metamorphic Geology, submitted.Google Scholar
  10. Clarke, G. L., R. Powell & M. Guiraud 1989. Low-pressure granulite facies metapelitic assemblages and corona textures from MacRobertson Land, east Antarctica: the importance of Fe2O3 and TiO2 in accounting for spinel-bearing assemblages. Journal of Metamorphic Geology 7, 323–35.CrossRefGoogle Scholar
  11. Clemens, J. D. & V. J. Wall 1981. Origin and crystallization of some peraluminous (S-type) granitic magmas. Canadian Mineralogist 19, 111–31.Google Scholar
  12. Collins, W. J. & C. Teyssier 1989. Crustal-scale ductile fault systems in the Arunta Inlier, central Australia. Tectonophysics 158, 49–66.CrossRefGoogle Scholar
  13. Collins, W. J., R. H. Vernon & G. L. Clarke 1989a. Two terranes of contrasting structural evolution in the Anmatjira Range, central Australia. Journal of Structural Geology, submitted.Google Scholar
  14. Collins, W. J., I. S. Williams & W. Compston 1989b. Three short-lived granulite facies events in the Arunta Block, central Australia. Geology, submitted.Google Scholar
  15. den Tex, E. 1963. A commentary on the correlation of metamorphism and deformation in space and time. Geologie en Mijnbouw 42, 170–6.Google Scholar
  16. Ellis, D. J. 1987. Origin and evolution of granulites in normal and thickened crusts. Geology 15, 167–70.CrossRefGoogle Scholar
  17. England, P. C. 1987. Diffuse continental deformation: length scales, rates and metamorphic evolution. Philosophical Transactions of the Royal Society of London A321, 3–22.Google Scholar
  18. England, P. C. & S. W. Richardson 1977. The influence of erosion upon the mineral facies of rocks from different metamorphic environments. Journal of the Geological Society of London 134, 210–13.CrossRefGoogle Scholar
  19. Grant, J. A. 1985. Phase equilibria in partial melting of pelitic rocks. In Migmatites, J. R. Ashworth (ed.), 86–144. Glasgow: Blackie.CrossRefGoogle Scholar
  20. Hensen, B. J. 1986. Theoretical phase relations involving cordierite and garnet revisited: the influence of oxygen fugacity on the stability of sapphirine and spinel in the system Mg-Fe-Al-Si-O. Contributions to Mineralogy and Petrology 92, 362–7.CrossRefGoogle Scholar
  21. Hoffer, E. 1976. The reaction sillimanite + biotite + quartz ⇌ cordierite + K-feldspar + H2O and partial melting in the system K2O-FeO-MgO-Al2O3-SiO2-H2O. Contributions to Mineralogy and Petrology 55, 127–30.CrossRefGoogle Scholar
  22. Holdaway, M. J. 1971. Stability of andalusite and the aluminum silicate phase diagram. American Journal of Science 271, 97–131.CrossRefGoogle Scholar
  23. Holdaway, M. J. & S. M. Lee 1977. Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical and natural observations. Contributions to Mineralogy and Petrology 63, 175–98.CrossRefGoogle Scholar
  24. Holland, T. J. B. & R. Powell 1990. An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. Journal of Metamorphic Geology 8, in press.Google Scholar
  25. Houseman, G. A., D. P. McKenzie & P. Molnar 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergence belts. Journal of Geophysical Research 86, 6115–32.CrossRefGoogle Scholar
  26. Johannes, W. 1985. The significance of experimental studies for the formation of migmatites. In Migmatites, J. R. Ashworth (ed.), 36–85. Glasgow: Blackie.CrossRefGoogle Scholar
  27. Kenan, C. & L. S. Hollister 1983. Anatexis in the Central Gneiss Complex, British Columbia. In Migmatites, melting and metamorphism, M. P. Atherton & C. D. Gribble (eds), 142–62. Nantwich, Cheshire: Shiva.Google Scholar
  28. Kerrick, D. M. & J. A. Speer 1988. The role of minor element solid solution on the andalusite-sillimanite equilibrium in metapelites and peraluminous granitoids. American Journal of Science 288, 152–92.CrossRefGoogle Scholar
  29. Kretz, R. 1966. Interpretation of the shape of mineral grains in metamorphic rocks. Journal of Petrology 7, 68–94.Google Scholar
  30. Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–9.Google Scholar
  31. Lister, G. S. & P. F. Williams 1983. The partitioning of deformation in flowing rock masses. Tectonophysics 92, 1–33.CrossRefGoogle Scholar
  32. Loosveld, R. J. H. & M. A. Etheridge 1990. A model for low-pressure facies metamorphism during crustal thickening. Journal of Metamorphic Geology, submitted.Google Scholar
  33. McLellan, E. L. 1983. Contrasting textures in metamorphic and anatectic migmatites: an example from the Scottish Caledonides. Journal of Metamorphic Geology 1, 241–62.CrossRefGoogle Scholar
  34. Manning, D. A. C. & M. Pichavant 1983. The role of fluorine and boron in the generation of granitic melts. In Migmatites, melting and metamorphism, M. P. Atherton & C. D. Gribble (eds), 94–109. Nantwich, Cheshire: Shiva.Google Scholar
  35. Mawer, C. K., D. C. Rubie & A. J. Brearley 1988. A model for rapid melting in crustal shear zones: implications for mechanisms of melt migration (abstract). EOS, Transactions, American Geophysical Union 69, 1411.Google Scholar
  36. Mehnert, K. R. 1968. Migmatites and the origin of granitic rocks. Amsterdam: Elsevier.Google Scholar
  37. Merrill, R. B., J. K. Robertson & P. J. Wyllie 1970. Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O to 20 kilobars compared with results for other feldspar-quartz-H2O and rock-H2O systems. Journal of Geology 78, 558–69.CrossRefGoogle Scholar
  38. Noakes, L. C. 1953. The structure of the Northern Territory in relation to mineralization. In Fifth Empire Mineral Congress: geology of Australian ore deposits, 284–96.Google Scholar
  39. Phillips, G. N. 1980. Water activity changes across an amphibolite-granulite facies transition, Broken Hill, Australia. Contributions to Mineralogy and Petrology 75, 377–86.CrossRefGoogle Scholar
  40. Phillips, G. N. & V. J. Wall 1981. Evaluation of prograde metamorphic conditions: their implications for the heat source and water activity during metamorphism in the Willyama Complex, Broken Hill, Australia. Bulletin de Minéralogie 104, 801–10.Google Scholar
  41. Powell, R. & T. J. B. Holland 1988. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. Journal of Metamorphic Geology 6, 173–204.CrossRefGoogle Scholar
  42. Richardson, S. W., M. C. Gilbert & P. M. Bell 1969. Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria: the aluminum silicate triple point. American Journal of Science 267, 259–72.CrossRefGoogle Scholar
  43. Sandiford, M. A. 1985. The metamorphic evolution of granulites at Fyfe Hills: implications for Archaean crustal thickness in Enderby Land, Antarctica. Journal of Metamorphic Geology 3, 155–78.CrossRefGoogle Scholar
  44. Selverstone, J., F. S. Spear, G. Franz & G. Morteani 1984. High-pressure metamorphism in the SW Tauern Window, Austria: P- T paths form hornblende-kyanite-staurolite schists. Journal of Petrology 25, 501–31.Google Scholar
  45. Sheraton, J. W., L. A. Offe, R. J. Tingey & D. J. Ellis 1980. Enderby Land, Antarctica-an unusual Precambrian high-grade terrain. Journal of the Geological Society of Australia 27, 1–18.CrossRefGoogle Scholar
  46. Stewart, A. J. 1981. Reynolds Range region. 1:100 000 Geological Map Series. Canberra: Australian Bureau of Mineral Resources, Geology & Geophysics.Google Scholar
  47. Stewart, A. J., L. A. Offe, A. J. Glikson, R. G. Warren & L. P. Black 1980. Geology of the northern Arunta Block, Northern Territory. Australian Bureau of Mineral Resources, Geology & Geophysics Record 1980/83, 292 pp.Google Scholar
  48. Stewart, A. J., R. D. Shaw & L. P. Black 1984. The Arunta Inlier: a complex ensialic mobile belt in central Australia. Part 1. Stratigraphy, correlations and origin. Australian Journal of Earth Sciences 31, 445–55.CrossRefGoogle Scholar
  49. Thompson, A. B. & P. C. England 1984. Pressure-temperature-time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks. Journal of Petrology 25, 929–55.Google Scholar
  50. Turner, F. J. 1981. Metamorphic petrology, 2nd edn. New York: McGraw-Hill.Google Scholar
  51. Tuttle, O. F. & N. L. Bowen 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geological Society of America, Memoir 74, 153 pp.Google Scholar
  52. Vernon, R. H. 1968. Microstructures of high-grade metamorphic rocks at Broken Hill, Australia. Journal of Petrology 9, 1–22.Google Scholar
  53. Vernon, R. H. 1976. Metamorphic processes. London: Allen & Unwin.Google Scholar
  54. Vernon, R. H. 1978. Pseudomorphous replacement of cordierite by symplectic intergrowths of andalusite, biotite and quartz. Lithos 11, 283–9.CrossRefGoogle Scholar
  55. Vernon, R. H. 1979. Formation of late sillimanite by hydrogen metasomatism (base-leaching) in some high-grade gneisses. Lithos 12, 143–52.CrossRefGoogle Scholar
  56. Vernon, R. H. 1982. Isobaric cooling of two regional metamorphic complexes related to igneous intrusions in southeastern Australia. Geology 10, 76–81.CrossRefGoogle Scholar
  57. Vernon, R. H. 1986. K-feldspar megacrysts in granites — phenocrysts, not porphyroblasts. Earth-Science Reviews 23, 1–63.CrossRefGoogle Scholar
  58. Vernon, R. H. 1987. Oriented growth of sillimanite in andalusite, Placitas — Juan Tabo area, New Mexico, U.S.A. Canadian Journal of Earth Sciences 24, 580–90.CrossRefGoogle Scholar
  59. Vernon, R. H. 1988. Sequential growth of cordierite and andalusite porphyroblasts, Cooma Complex, Australia: microstructural evidence of a prograde reaction. Journal of Metamorphic Geology 6, 255–69.CrossRefGoogle Scholar
  60. Vernon, R. H. & W. J. Collins 1988. Igneous microstructures in migmatites. Geology 16, 1126–9.CrossRefGoogle Scholar
  61. Vernon, R. H. & G. D. Pooley 1981. SEM/microprobe study of some symplectic intergrowths replacing cordierite. Lithos 14, 75–82.CrossRefGoogle Scholar
  62. Vielzeuf, D. & J. R. Holloway 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. Contributions to Mineralogy and Petrology 98, 257–76.CrossRefGoogle Scholar
  63. Warren, R. G. 1983. Metamorphic and tectonic evolution of granulites, Arunta Block, central Australia. Nature 305, 300–3.CrossRefGoogle Scholar
  64. Warren, R. G. & A. J. Stewart 1988. Isobaric cooling of Proterozoic high-temperature metamorphites in the northern Arunta Block, central Australia. Precambrian Research 40/41, 175–98.CrossRefGoogle Scholar
  65. Weiss, L. E. & D. B. Mclntyre 1957. Structural geometry of Dalradian rocks at Loch Leven, Scottish Highlands. Journal of Geology 65, 575–602.CrossRefGoogle Scholar
  66. Wells, P. R. A. 1980. Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. Earth and Planetary Science Letters 46, 253–65.CrossRefGoogle Scholar
  67. White, A. J. R., B. W. Chappell & J. R. Cleary 1974. Geologic setting and emplacement of some Australian Paleozoic batholiths and implications for intrusion mechanisms. Pacific Geology 8, 159–71.Google Scholar
  68. Wickham, S. M. & E. R. Oxburgh 1985. Continental rifts as a setting for regional metamorphism. Nature 318, 330–3.CrossRefGoogle Scholar
  69. Windrum, D. P. & M. T. McCulloch 1986. Nd and Sr isotopic systematics of central Australian granulites: chronology of crustal development and constraints on the evolution of lower continental crust. Contributions to Mineralogy and Petrology 94, 289–303.CrossRefGoogle Scholar
  70. Wyborn, L. A. I. 1977. Aspects of the geology of the Snowy Mountains region and their implications for the tectonic evolution of the Lachlan Fold Belt. Unpubl. PhD thesis, Australian National University, Canberra.Google Scholar
  71. Zwart, H. J. 1962. On the determination of polymetamorphic mineral associations and its application to the Bosost area (Central Pyrenees). Geologische Rundschau 52, 38–65.CrossRefGoogle Scholar

Copyright information

© J.R. Ashworth, M. Brown & contributors 1990

Authors and Affiliations

  • R. H. Vernon
  • G. L. Clarke
  • W. J. Collins

There are no affiliations available

Personalised recommendations