Advertisement

An overview of diverse responses to diverse processes at high crustal temperatures

  • J. R. Ashworth
  • M. Brown
Chapter
Part of the The Mineralogical Society Series book series (MIBS, volume 2)

Abstract

At the highest temperatures of regional metamorphism, crustal rocks undergo combinations of deformation, mineral reactions, partial melting, and geochemical transport processes. The scientific challenge goes beyond simple description of these processes, to the estimation of physical conditions (notably pressure, P and temperature, T), eventually leading to inferences about the tectonic régimes and heat sources responsible for the pressure-temperature-time (P-T-t) evolution of a region (from cold to hot followed by cooling and uplift to its present position at the Earth’s surface). This volume comprises reviews which explain the current state of progress towards these goals using different methods and in several different high-grade terranes.

Keywords

Partial Melting Planetary Science Letter Mafic Granulite Dehydration Melting Melting Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aftalion, M., D. R. Bowes, B. Dash & T. J. Dempster 1988. Late Proterozoic charnockites in Orissa, India: a U-Pb and Rb-Sr isotopic study. Journal of Geology 96, 663–76.CrossRefGoogle Scholar
  2. Albarède, F. 1976. Thermal models of post-tectonic decompression as exemplified by the Haut-Allier granulites (Massif Central, France). Bulletin de la Société Géologique de France 18, 1023–32.Google Scholar
  3. Allègre, C. J. & J. F. Minster 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters 38, 1–25.CrossRefGoogle Scholar
  4. Arzi, A. A. 1978. Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44, 173–84.CrossRefGoogle Scholar
  5. Ashworth, J. R. & E. L. McLellan 1985. Textures. In Migmatites, J. R. Ashworth (ed.) 180–203. Glasgow: Blackie.CrossRefGoogle Scholar
  6. Barbey, P., J.-M. Bertrand, S. Angoua & D. Dautel 1989. Petrology and U/Pb geochronology of the Telohat migmatites, Aleksod, Central Hoggar, Algeria. Contributions to Mineralogy and Petrology 101, 207–19.CrossRefGoogle Scholar
  7. Barr, D. 1985. Migmatites in the Moines. In Migmatites, J. R. Ashworth (ed.), 204–64. Glasgow: Blackie.Google Scholar
  8. Bohlen, S. R. 1987. Pressure-temperature-time paths and a tectonic model for the evolution of granulites. Journal of Geology 95, 617–32.CrossRefGoogle Scholar
  9. Bohlen, S. R. & K. Mezger 1989. Origin of granulite terranes and the formation of the iowermost continental crust. Science 244, 326–9.CrossRefGoogle Scholar
  10. Bowers, T. C. & H. C. Helgeson 1983. Calculation of the thermodynamic and geochemical consequences of non-ideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: equation of state for F2O-CO2-NaCl fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta 47, 1247–75.CrossRefGoogle Scholar
  11. Brown, M. 1988. P-T-t paths and melting in garnet-cordierite gneisses. Terra Cognita 8, 267.Google Scholar
  12. Brown, M. & M. M. Earle 1983. Cordierite-bearing schists and gneisses form Timor, eastern Indonesia: P—T conditions of metamorphism and tectonic implications. Journal of Metamorphic Geology 1, 183–203.CrossRefGoogle Scholar
  13. Clark, R. G. & J. B. Lyons 1986. Petrogenesis of the Kinsman intrusive suite: peraluminous granitoids of western New Hampshire. Journal of Petrology 27, 1365–93.Google Scholar
  14. Clemens J. D. & D. Vielzeuf 1987. Constraints on melting and magma production in the crust. Earth and Planetary Science Letters 86, 287–306.CrossRefGoogle Scholar
  15. Droop, G. T. R. & K. Bucher-Nurminen 1984. Reaction textures and metamorphic evolution of sapphirine-bearing granulites from the Gruf Complex, Italian central Alps. Journal of Petrology 25, 766–803.Google Scholar
  16. Ellis, D. J. 1987. Origin and evolution of granulites in normal and thickened crusts. Geology 15, 167–70.CrossRefGoogle Scholar
  17. England, P. C. & S. W. Richardson 1977. The influence of erosion upon the mineral facies of rocks from different metamorphic environments. Journal of the Geological Society of London 134, 201–13.CrossRefGoogle Scholar
  18. England, P. C. & A. B. Thompson 1984. Pressure-temperature-time paths of regional metamorphism. I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology 25, 894–928.Google Scholar
  19. Evans, N. H. & J. A. Speer 1984. Low-pressure metamorphism and anatexis of Carolina Slate Belt phyllites in the contact aureole of the Lilesville pluton, North Carolina, U.S.A. Contributions to Mineralogy and Petrology 87, 297–309.CrossRefGoogle Scholar
  20. Grant, J. A. 1985. Phase equilibria in partial melting of pelitic rocks. In Migmatites, J. R. Ashworth (ed.), 86–144. Glasgow: Blackie.CrossRefGoogle Scholar
  21. Harley, S. L. 1989. The origins of granulites: a metamorphic perspective. Geological Magazine 126, 215–47.CrossRefGoogle Scholar
  22. Harmon, R. S. & A. N. Halliday 1980. Oxygen and strontium isotope relationships in the British late Caledonian granites. Nature 283, 21–5.CrossRefGoogle Scholar
  23. Harris, N. B. W. & T. J. B. Holland 1984. The significance of cordierite-hypersthene assemblages from the Beitbridge region of the central Limpopo Belt: evidence for rapid decompression in the Archaean? American Mineralogist 69, 1036–49.Google Scholar
  24. Hensen, B. J. 1971. Theoretical phase relations involving cordierite and garnet in the system MgO-FeO-Al2O3-SiO2. Contributions to Mineralogy and Petrology 33, 191–214.CrossRefGoogle Scholar
  25. Hensen, B. J. & Y. Motoyoshi 1988. Sapphirine-quartz-orthopyroxene symplectites after cordierite in granulites from the Napier Complex, Antarctica: evidence for a counter-clockwise P-T path? Terra Cognita 8, 263.Google Scholar
  26. Hildreth, W. & S. Moorbath 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology 98, 455–89.CrossRefGoogle Scholar
  27. Hill, R. I., L. T. Silver & H. P. Taylor Jr. 1986. Coupled Sr-O isotope variations as an indicator of source heterogeneity for the northern Peninsular Ranges Batholith. Contributions to Mineralogy and Petrology 92, 351–61.CrossRefGoogle Scholar
  28. Hollister, L. S. 1982. Metamorphic evidence for rapid (2 mm/yr) uplift of a portion of the Central Gneiss Complex, Coast Mountains, B. C. Canadian Mineralogist 20, 319–32.Google Scholar
  29. Hollister, L. S. 1988. On the origin of C02-rich fluid inclusions in migmatites. Journal of Metamorphic Geology 6, 467–74.CrossRefGoogle Scholar
  30. Hollister, L. S. & M. L. Crawford 1986. Melt-enhanced deformation: a major tectonic process. Geology 14, 558–61.CrossRefGoogle Scholar
  31. Hutton, D. H. W. 1988. Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 245–55.CrossRefGoogle Scholar
  32. Janardhan, A. S., R. C. Newton & J. V. Smith 1979. Ancient crustal metamorphism at low P H2O: charnockite formation at Kabbaldurga, South India. Nature 278, 511–14.CrossRefGoogle Scholar
  33. Janardhan, A. S., R. C. Newton & E. C. Hansen 1982. The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contributions to Mineralogy and Petrology 79, 130–49.CrossRefGoogle Scholar
  34. Jiang, J., R. N. Clayton & R. C. Newton 1988. Fluids in granulite facies metamorphism: a comparative oxygen isotope study on the South India and Adirondack high-grade terrains. Journal of Geology 96, 517–33.CrossRefGoogle Scholar
  35. Johannes, W. 1985. The significance of experimental studies for the formation of migmatites. In Migmatites, J. R. Ashworth (ed.), 36–85. Glasgow: Blackie.CrossRefGoogle Scholar
  36. Jones, K. A. & M. Brown 1990. A high temperature ‘clockwise’ P-T path and melting in the development of regional migmatites: An example from Southern Brittany, France. Journal of Metamorphic Geology 8, (in press).Google Scholar
  37. Lal, R. K., D. Ackermand & H. Upadhyay 1987. P-T-X relationships deduced from corona textures in sapphirine-spinel-quartz assemblages from Paderu, southern India. Journal of Petrology 28, 1139–68.Google Scholar
  38. van der Molen, I. & M. S. Paterson 1979. Experimental deformation of partially-melted granite. Contributions to Mineralogy and Petrology 70, 299–318.CrossRefGoogle Scholar
  39. Naslund, H. R. 1986. Disequilibrium partial melting and rheomorphic layer formation in the contact aureole of the Basistoppen Sill, East Greenland. Contributions to Mineralogy and Petrology 93, 359–67.CrossRefGoogle Scholar
  40. Peterson, J. W. & R. C. Newton 1989. CO2-enhanced melting of biotite-bearing rocks at deep-crustal pressure-temperature conditions. Nature 340, 378–80.CrossRefGoogle Scholar
  41. Pichavant, M. 1987. Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar. American Mineralogist 72, 1056–70.Google Scholar
  42. Powell, R. 1983. Fluids and melting under upper amphibolite facies conditions. Journal of the Geological Society of London 140, 629–33.CrossRefGoogle Scholar
  43. Price, R. C. & S. R. Taylor 1977. The rare earth element geochemistry of granite, gneiss and migmatite from the Western Metamorphic Belt of south-eastern Australia. Contributions to Mineralogy and Petrology 62, 249–63.CrossRefGoogle Scholar
  44. Pride, C. & G. K. Muecke 1982. Geochemistry and origin of granitic rocks, Scourian Complex, NW Scotland. Contributions to Mineralogy and Petrology 80, 379–85.CrossRefGoogle Scholar
  45. Rutter, M. J. & P. J. Wyllie 1988. Melting of vapour-absent tonalite at 10 kbar to simulate dehydration-melting in the deep crust. Nature 331, 159–60.CrossRefGoogle Scholar
  46. Sandiford, M. A. & R. Powell 1986. Deep crustal metamorphism during continental extension: modern and ancient examples. Earth and Planetary Science Letters 79, 151–8.CrossRefGoogle Scholar
  47. Sawyer, E. W. 1987. The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. Journal of Petrology 28, 445–73.Google Scholar
  48. Sawyer, E. W. & S.-J. Barnes 1988. Temporal and compositional difference between subsolidus and anatectic migmatite leucosomes from the Quetico metasedimentary belt, Canada. Journal of Metamorphic Geology 6, 437–50.CrossRefGoogle Scholar
  49. Sonder, L. J., P. C. England, B. P. Wernicke & R. L. Christiansen 1987. A physical model for Cenozoic extension of western North America. In Continental extensional tectonics, M. P. Coward, J. F. Dewey & P. L. Hancock (eds), 187–201. Geological Society of London Special Publication 28.Google Scholar
  50. Strachan, R. A., P. J. Treloar, M. Brown & R. S. D’Lemos 1989. Cadomian terrane tectonics and magmatism in the Armorican Massif. Journal of the Geological Society of London 146, 423–6.CrossRefGoogle Scholar
  51. Strong, D. F. & S. K. Hanmer 1981. The leucogranites of Southern Brittany: origin by faulting, frictional heating, fluid flux and fractional melting. Canadian Mineralogist 19, 163–76.Google Scholar
  52. Tait, R. E. & S. L. Harley 1988. Local processes involved in the generation of migmatites within mafic granulites. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 209–22.CrossRefGoogle Scholar
  53. Tracy, R. J. & P. Robinson 1983. Acadian migmatite types in pelitic rocks of Central Massachusetts. In Migmatites, melting and metamorphism, M. P. Atherton & C. D. Gribble (eds), 163–73. Nantwich, U.K.: Shiva.Google Scholar
  54. Wall, V. J., J. D. Clemens & D. B. Clarke 1987. Models for granitoid evolution and source composition. Journal of Geology 95, 731–49.CrossRefGoogle Scholar
  55. Warren, R. G. 1983. Metamorphic and tectonic evolution of granulites, Arunta Block, central Australia. Nature 305, 300–3.CrossRefGoogle Scholar
  56. Waters, D. J. 1988. Partial melting and the formation of granulite fades assemblages in Namaqualand, South Africa. Journal of Metamorphic Geology 6, 387–404.CrossRefGoogle Scholar
  57. Waters, D. J. & C. J. Whales 1984. Dehydration melting and the granulite transition in metapelites from southern Namaqualand, S. Africa. Contributions to Mineralogy and Petrology 88, 269–75.CrossRefGoogle Scholar
  58. Wells, P. R. A. 1980. Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. Earth and Planetary Science Letters 46, 253–65.CrossRefGoogle Scholar
  59. Wendlandt, R. F. 1981. Influence of CO2 on melting of model granulite facies assemblages: a model for the genesis of charnockites. American Mineralogist 66, 1164–74.Google Scholar
  60. Wickham, S. M. 1987. The segregation and emplacement of granitic magmas. Journal of the Geological Society of London 144, 281–97.CrossRefGoogle Scholar
  61. Wickham, S. M. & H. P. Taylor Jr. 1985. Stable isotope evidence for large scale seawater infiltration in a regional metamorphic terrane; the Trois Seigneurs Massif, Pyrenees, France. Contributions to Mineralogy and Petrology 91, 122–37.CrossRefGoogle Scholar

Copyright information

© J.R. Ashworth, M. Brown & contributors 1990

Authors and Affiliations

  • J. R. Ashworth
  • M. Brown

There are no affiliations available

Personalised recommendations