Skip to main content

High Resolution NMR on Organic Radical Salts

  • Chapter

Part of the book series: Physics and Chemistry of Materials with Low-Dimensional Structures ((PCMALS,volume 15))

Abstract

NMR (Nuclear Magnetic Resonance) is one of the most versatile spectroscopic techniques for the investigation of solids because it can provide information about local magnetic and electric fields at the atomic level as well as fluctuations of these fields caused e.g. by conduction electrons in organic conductors. In ordinary organic materials proton and carbon NMR spectroscopy in solution has become a routine method to study the diamagnetic interaction of these nuclei with electrons in closed shells (chemical shift). The NMR investigation of organic radical salts, however, is aimed at gathering information about the interaction of delocalized unpaired electron spins (hyperfine interaction) thereby probing basically the electronic structure of the conduction band which can be viewed as a linear combination of the singly occupied molecular orbitals (SOMO). In isolated organic radicals the hyperfine coupling is usually very large, whereas in organic conductors it is rather small due to electron delocalization (organic conductors) or due to a strong exchange coupling among the electron spins (Mott Hubbard insulators). In organic conductors high resolution NMR spectroscopy is therefore mandatory in order to observe the hyperfine interaction between conduction electrons and the nuclei resulting in the Knight shift.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AuBDT:

Au-bis-dithiolene

BEDT-TTF:

Bisethylenedithiolotetrafulvalene

CuBDT:

Cu-bis-dithiolene

DMET:

Dimethyl(ethylenedithio)silenadithiafulvalene

(dmit):

l,3-dithia-2-thione-4,5-dithiolato

DMTM:

Dimethylthiomorpholinium

DMe-DCNQI:

2,5-dimethyl-N, N'-dicyanoquinodiimine

DPPH:

α , α -diphenyl-p-picrylhydrazyl

FA:

Fluoranthene

MDT-TTF:

Methylenedithio-tetrathiafulvalene

MEM:

Methylethylmorpholinium

NMP:

N-methylphenazine

Qn:

Quinolinium

TCNQ:

7,7,8,8-Tetracyano-p-quinodimethane

THF:

Tetrahydrofurane

TMTSF:

Tetramethyltetraselenafulvalene

TMTTF:

Tetramethyltetrathiafulvalene

TTF:

Tetrathiafulvalene

References

  1. M.E. Anderson, P.J. Zandstra, and T.R. Tuttle, jr., J. Chem. Phys. 33, 1591 (1960).

    Article  ADS  Google Scholar 

  2. M.E. Anderson, G.E. Pake, and T.R. Tuttle, jr., J. Chem. Phys. 33, 1581 (1960).

    Article  ADS  Google Scholar 

  3. F. Devreux, Cl. Jeandey, and M. Nechtschein, J. Physique 40, 671 (1979).

    Article  Google Scholar 

  4. S. Oostra, B. v. Bodegom, S. Huizinga, and G.A. Sawatzky, Phys. Rev. B24, 5004 (1981).

    ADS  Google Scholar 

  5. J. Wieland, U. Haeberlen, D. Schweitzer, and H.J. Keller, Synth. Metals 10, 393 (1987).

    Article  Google Scholar 

  6. F. Hentsch, M. Heimle, D. Köngeter, and M. Mehring, Phys. Rev. B37, 7205 (1988).

    ADS  Google Scholar 

  7. A. Hackmann, H. Seidel, R.D. Kendrick, P.C. Myhre, and C.S. Yannoni, J. Mag. Res. 79, 148 (1988).

    Google Scholar 

  8. P.C. Myhre, G.G. Webb, and C.S. Yannoni, J. Am. Chem. Soc. 112, 8991 (1990).

    Article  Google Scholar 

  9. P.C. Myhre, G.G. Webb, and C.S. Yannoni, J. Am. Chem. Soc. 112, 8992 (1990).

    Article  Google Scholar 

  10. J. Hubbard, Proc. Roy. Soc. A276, 238, (1963).

    ADS  Google Scholar 

  11. J. Hubbard, Proc. Roy. Soc. A281, 401 (1965).

    ADS  Google Scholar 

  12. S. Mazumdar and A.N. Bloch, Phys. Rev. Lett. 50, 207 (1983).

    Article  ADS  Google Scholar 

  13. H. Shiba and P.A. Pincus, Phys. Rev. B5, 1966 (1972).

    ADS  Google Scholar 

  14. H. Shiba, Phys. Rev. B6, 930 (1972).

    ADS  Google Scholar 

  15. J.B. Torrance, Y. Tomkiewicz, and B.D. Silverman, Phys. Rev. B15, 4738 (1977).

    ADS  Google Scholar 

  16. R.E. Peierls, Quantum Theory of Solids ,Oxford University Press (1955).

    Google Scholar 

  17. G. Beni and P. Pincus, J. Chem. Phys. 57, 3531 (1972).

    Article  ADS  Google Scholar 

  18. H. Fröhlich, Proc. Roy. Soc. London A223, 296 (1954).

    ADS  Google Scholar 

  19. A.W. Overhauser, Adv. Phys. 27, 343 (1978).

    Article  ADS  Google Scholar 

  20. S. Kagoshima, H. Nagasawa, and T. Sambongi, One-Dimensional Conductors ,Springer Series in Solid-State Sciences 72, Springer (1988).

    Google Scholar 

  21. U. Haeberlen, High Resolution NMR in Solids, Selective Averaging ,in: Advances in Magnetic Resonance ,Supplement I, J.S. Waugh, ed., Academic Press, (1976).

    Google Scholar 

  22. M. Mehring, Principles of High Resolution NMR in Solids ,Springer (1976).

    Google Scholar 

  23. A. Abragam, Principles of Nuclear Magnetism ,Oxford University Press (1961).

    Google Scholar 

  24. C.P. Slichter, Principles of Magnetic Resonance ,Harper and Row, New York (1963).

    Google Scholar 

  25. M. Weissbluth, Atoms and Molecules ,Academic Press (1978).

    Google Scholar 

  26. A. Carrington and A.D. McLachlan, Introduction to Magnetic Resonance ,Harper & Row, New York (1969).

    Google Scholar 

  27. L. Salem, Molecular Orbital Theory of Conjugated Systems ,Benjamin, New York (1966).

    Google Scholar 

  28. J.A. Pople and D.L. Beveridge, Approximate Molecular Orbital Theory ,McGraw-Hill, New York (1970).

    Google Scholar 

  29. J. Sadlej, Semi Empirical Methods of Quantum Chemistry ,Ellis Horwood Limited (1985).

    Google Scholar 

  30. G.N. La Mar, W.DeW. Horrocks, and R.H. Holm, NMR of Paramagnetic Molecules, Principles and Applications ,Academic Press (1973).

    Google Scholar 

  31. T. Cole and C. Heller, J. Chem. Phys. 34, 1085 (1961).

    Article  ADS  Google Scholar 

  32. H. McConnell and D.B. Chesnut, J. Chem. Phys. 28, 107 (1958).

    Article  ADS  Google Scholar 

  33. M. Karplus and G.K. Fraenkel, J. Chem. Phys. 35, 1312 (1961).

    Article  ADS  Google Scholar 

  34. A.D. McLachlan, Mol. Phys. 3, 233 (1960).

    Article  ADS  Google Scholar 

  35. M. Mehring in ’Low Dimensional Conductors and Superconductors’ ,NATO Advanced Study Institute, Series B, Vol. 155, D. Jérome and L.G. Caron, eds., Plenum Press, N.Y., (1987), p. 185.

    Google Scholar 

  36. P.K. Kahol, M. Mehring, and X. Wu, J. Physique 46, 1683 (1985).

    Article  Google Scholar 

  37. M. Mehring and J. Spengler, Phys. Rev. Lett. 53, 2441 (1984).

    Article  ADS  Google Scholar 

  38. V. Enkelmann, B.S. Morra, Ch. Kröhnke, and G. Wegner, Chem. Phys. 66, 303 (1982).

    Article  Google Scholar 

  39. C.A. Coulson and A. Streitwieser, Dictionary of -Electron Calculations ,Pergamon Press (1965).

    Google Scholar 

  40. R.A. Wind, H. Lock, and M. Mehring, Chem. Phys. Lett. 141, 283 (1987).

    Article  ADS  Google Scholar 

  41. H. Brunner, K.H. Hausser, H.J. Keller, and D. Schweitzer, Solid State Commun. 51, 107 (1984).

    Article  ADS  Google Scholar 

  42. A. Carrington, F. Dravnieks, and M.C.R. Symons, J. Chem. Soc. ,947 (1959).

    Google Scholar 

  43. J.P. Colpa and J.R. Bolton, Mol. Phys. 6, 273 (1963).

    Article  ADS  Google Scholar 

  44. P. Bernier, M. Audenaert, R.J. Schweizer, P.C. Stein, D. Jerome, K. Bechgaard, and A. Moradpour, J. Physique Lett. 46, L–675 (1985).

    Article  Google Scholar 

  45. R.M. Metzger, J. Chem. Phys. 75, 482 (1981).

    Article  ADS  Google Scholar 

  46. N. Thorup, G. Rindorf, H. Soling, and K. Bechgaard, Acta Cryst. B37, 1236 (1981).

    Google Scholar 

  47. P.C. Stein, P. Bernier, and C. Lenoir, Physica 143B, 491 (1986).

    Google Scholar 

  48. P. Bernier, P.C. Stein, and C. Lenoir, Physica 143B, 494 (1986).

    Google Scholar 

  49. P.C. Stein, and P. Bernier, Phys. Rev. B37, 10637 (1988).

    ADS  Google Scholar 

  50. P.C. Stein, and P. Bernier, Synth. Metals 27, B77 (1988).

    Article  Google Scholar 

  51. D. Köngeter and M. Mehring, Phys. Rev. B39, 6361 (1989).

    ADS  Google Scholar 

  52. A.M. Vainrub, I.A. Heinmaa, and E.B. Yagubskii, JETP Lett. 44, 317 (1986).

    ADS  Google Scholar 

  53. J. Herzfeld and A.E. Berger, J. Chem. Phys. 73, 6021 (1980).

    Article  ADS  Google Scholar 

  54. I. Hennig, Ph.D. thesis, University of Heidelberg, (1989).

    Google Scholar 

  55. T. Klutz, I. Hennig, U. Haeberlen, and D. Schweitzer, subm. to Appl. Magn. Resonance (1992).

    Google Scholar 

  56. T. Takahashi, D. Jérome, F. Masin, J.M. Fabre, and L. Giral, J. Phys. C17, 3777 (1984).

    ADS  Google Scholar 

  57. E.F. Rybaczewski, L.S. Smith, A.F. Garito, A.J. Heeger, and B.G. Silbernagel, Phys. Rev. B 14, 2746 (1976).

    Article  ADS  Google Scholar 

  58. Y. Tomkiewicz, A.R. Taranko, and J.B. Torrance Phys. Rev. Lett. 36, 751 (1976).

    Article  ADS  Google Scholar 

  59. Y. Tomkiewicz, A.R. Taranko, and E.M. Engler Phys. Rev. Lett. 37, 1705 (1976).

    Article  ADS  Google Scholar 

  60. M. Heimle, J. Reiner, U. Rempel, M. Mehring, J.U. von Schütz, P. Erk, H. Meixner, and S. Hünig, Synth. Metals 42, 1763 (1991).

    Article  Google Scholar 

  61. D. Köngeter, F. Hentsch, H. Seidel, M. Mehring, J.U. von Schütz, H.C. Wolf, P. Erk, and S. Hünig, Solid State Commun. 65, 453 (1988).

    Article  Google Scholar 

  62. U. Langohr, M. Bair, J.U. von Schütz, H.-P. Werner, H.C. Wolf, P. Erk, H. Meixner, and S. Hünig, Fiz. 21, 23 (1989).

    Google Scholar 

  63. A. Kobayashi, R. Kato, H. Kobayashi, T. Mori, and H. Inokuchi, Solid State Commun. 64, 45 (1987).

    Article  ADS  Google Scholar 

  64. Y. Suzumura in: ’Low Dimensional Conductors and Superconductors’ ,NATO Advanced Study Institute, Series B, Vol. 155, D. Jerome and L.G. Caron, eds., Plenum Press, N.Y. (1987), p. 343.

    Google Scholar 

  65. J.P. Pouget, Chemica Scripta 17, 85 (1981).

    Google Scholar 

  66. F. Devreux, M. Nechtschein, and G. Grüner Phys. Rev. Lett. 45, 53 (1980).

    Article  ADS  Google Scholar 

  67. A.M. Vainrub, I.A. Heinmaa, M.A. Alla, S.Kh. Viya, and E.T. Lippmaa, JETP Lett. 41, 571 (1985).

    ADS  Google Scholar 

  68. V.V. Avilov, L.N. Bulaevskii, and O.N. Dorokhov, JETP Lett. 42, 192 (1985).

    ADS  Google Scholar 

  69. F. Rachdi, T. Nunes, M. Ribet, P. Bernier, M. Heimle, M. Mehring, and M. Almeida, Phys. Rev. B, in press (1992).

    Google Scholar 

  70. A.C. Kolbert, G. Zimmer, F. Rachdi, P. Bernier, M. Almeida, and M. Mehring, Phys. Rev. B, in press (1992).

    Google Scholar 

  71. G. Soda, D. Jérome, M. Weger, L. Alizon, J. Gallice, H. Robert, M. Fabre, and L. Giral, J. Physique 38, 931 (1977).

    Article  Google Scholar 

  72. F. Devreux and M. Nechtschein, Lecture Notes in Physics 95, 145, Springer (1978).

    Article  ADS  Google Scholar 

  73. G. Sachs, E. Dormann, and M. Schwoerer, Solid State Commun. 53, 73 (1985).

    Article  ADS  Google Scholar 

  74. L.G. Caron, F. Creuzet, P. Butaud, C. Bourbonnais, D. Jérome, and K. Bechgaard, Synth. Metals 27, B123 (1988).

    Article  Google Scholar 

  75. F. Creuzet, C. Bourbonnais, P. Wzietek, H. Nelisse, L.G. Caron, D. Jerome, and K. Bechgaard, Synth. Metals 27, B65 (1988).

    Article  Google Scholar 

  76. P. Wzietek, C. Bourbonnais, F. Creuzet, D. Jerome, and K. Bechgaard, Europhys. Lett. 12, 453 (1990).

    Article  ADS  Google Scholar 

  77. C. Bourbonnais, P. Wzietek, F. Creuzet, D. Jerome, P. Batail, and K. Bechgaaid, Phys. Rev. Lett.62 ,1532 (1989).

    Article  ADS  Google Scholar 

  78. V. Enkelmann and K. Göckelmann, Ber. Bunsenges. Phys. Chem. 91, 950 (1987).

    Google Scholar 

  79. V. Enkelmann, Synth. Metals 42, 2547 (1991).

    Article  Google Scholar 

  80. U. Köbler, J. Gmeiner, and E. Dormann, J. Mag. Mag. Mat. 69, 189 (1987).

    Article  ADS  Google Scholar 

  81. Th. Schimmel, W. Rieß, G. Denninger, and M. Schwoerer, Ber. Bunsenges. Phys. Chem. 91, 901 (1987).

    Google Scholar 

  82. P.A. Lee, T.M. Rice, and P.W. Anderson, Phys. Rev. Lett. 31, 462 (1973).

    Article  ADS  Google Scholar 

  83. D.C. Johnston, Phys. Rev. Lett. 52, 2049 (1984).

    Article  ADS  Google Scholar 

  84. W. Rieß, W. Schmid, J. Gmeiner, and M. Schwoerer, Synth. Metals 42, 2261 (1991).

    Article  Google Scholar 

  85. K. Bechgaard, K. Carneiro, F.B. Rasmussen, M. Olsen, G. Rindorf, C.S. Jacobsen, H.J. Pedersen, and J.C. Scott J. Am. Chem. Soc. 103, 2440 (1981).

    Article  Google Scholar 

  86. P.C. Stein, P. Bernier, and C. Lenoir, Phys. Rev. B35, 4389 (1987).

    ADS  Google Scholar 

  87. S. Ravy, G.P. Pouget, L. Valade, and P. Cassoux, Europhys. Lett. 9, 391 (1989).

    Article  ADS  Google Scholar 

  88. C. Bourbonnais, P. Wzietek, D. Jérome, F. Creuzet, L. Valade, and P. Cassoux, Europhys. Lett. 6, 177 (1988).

    Article  ADS  Google Scholar 

  89. A. Kobayashi, H. Kim, Y. Sasaki, R. Kato, and H. Kobayashi, Solid State Commun. 62, 57 (1987).

    Article  ADS  Google Scholar 

  90. M. Bousseau, L. Valade, J.P. Legros, P. Cassoux, P. Garbanska, and L.V. Interrante, J. Am. Chem. Soc. 108, 1908 (1986).

    Article  Google Scholar 

  91. A. Vainrub, D. Jérome, M.-F. Bruniquel, and P. Cassoux, Europhys. Lett. 12, 267 (1990).

    Article  ADS  Google Scholar 

  92. A. Vainrub, E. Canadell, D. Jérome, P. Bernier, T. Nunes, M.-F. Bruniquel, and P. Cassoux, J. Physique 51, 2465 (1990).

    Article  Google Scholar 

  93. E. Canadell, I.E.-I. Rachidi, S. Ravy, J.P. Pouget, L. Brossard, and J.P. Legros, J. Physique 50, 2967 (1989).

    Article  Google Scholar 

  94. J.W. Bray, L.V. Interrante, I.S. Jacobs, and J.C. Bonner, Extended Linear Chain Compounds Vol. 3, J.S. Miller, ed.. Plenum Press (1983), p. 353.

    Google Scholar 

  95. T.W. Hijmans, H.B. Brom, and L.J. de Jongh, J. Phys. C 19, 1581 (1986).

    Article  ADS  Google Scholar 

  96. J.A. Northby, H.A. Groenendijk, L.J. de Jongh, J.C. Bonner, I.S. Jacobs, and L.V. Interrante, Phys. Rev. B25, 3215 (1982).

    ADS  Google Scholar 

  97. J.A. Northby, F.J.A.M. Greidanus, W.J. Huiskamp, L.J. de Jongh, I.S. Jacobs, and L.V. Interrante, J. Appl. Phys. 53, 8032 (1982).

    Article  ADS  Google Scholar 

  98. T.W. Hijmans, H.B. Brom, and L.J. de Jongh, Phys. Rev. Lett. 54, 1714 (1985).

    Article  ADS  Google Scholar 

  99. P.I. Kuindersma, G.A. Sawatzky, J. Kommandeur, and C.J. Schinkel, J. Phys. C: Solid State Physics 8, 3016 (1975).

    Article  ADS  Google Scholar 

  100. S. Huizinga, J. Kommandeur, G.A. Sawatzky, B.T. Thole, and K. Kopinga, W.J.M. de Jonge, and J. Roos, Phys. Rev. B 19, 4723 (1979).

    Article  ADS  Google Scholar 

  101. J.C. Bonner and M.E. Fisher, Phys. Rev. 135, A640 (1964).

    Article  ADS  Google Scholar 

  102. B. van Bodegom, B.C. Larson, and H.A. Mook, Phys. Rev. B24, 1520 (1981).

    ADS  Google Scholar 

  103. D. Jérome and H.J. Schulz, Adv. Phys. 31, 299 (1982).

    Article  ADS  Google Scholar 

  104. M. Peo, J.C. Scott, and E.M. Engler, Mol. Cryst. Liq. Cryst. 119, 303 (1985).

    Article  Google Scholar 

  105. Z. Toffano, K. Bechgaard, and A. Moradpour, Mol. Cryst. Liq. Cryst. 119, 151 (1985).

    Article  Google Scholar 

  106. J.M. Delrieu, M. Roger, Z. Toffano, A. Moradpour, and K. Bechgaard, J. Physique 47, 839 (1986).

    Article  Google Scholar 

  107. J.M. Delrieu, M. Rogers, Z. Toffano, E. Wope Mbougue, R. Saint James, and K. Bechgaard, Synth. Metals 19, 283 (1987).

    Article  Google Scholar 

  108. T. Takahashi, Y. Maniwa, H. Kawamura, and G. Saito, J. Phys. Soc. Japan 55, 1364 (1988).

    ADS  Google Scholar 

  109. K. Kanoda, Y. Kobayashi, T. Takahashi, T. Inukai, and G. Saito, Phys. Rev. B42, 8678 (1990).

    ADS  Google Scholar 

  110. K. Kanoda, T. Takahashi, T. Tokiwa, K. Kikuchi, K. Saito, I. Ikemoto, and K. Kobayashi, Phys. Rev. B 38, 39 (1988).

    Article  ADS  Google Scholar 

  111. J.M. Delrieu and N. Kinoshita, Synth. Metals 43, 3947 (1991).

    Article  Google Scholar 

  112. D. Follstaedt and C.P. Slichter, Phys. Rev. B13, 1017 (1976).

    ADS  Google Scholar 

  113. H.O. Kalinowski, St. Berger, and S. Braun, 13C-NMR-Spektroskopie ,G.Thieme Verlag, Stuttgart (1984).

    Google Scholar 

  114. C. Berthier and P. Ségransan in: ’Low Dimensional Conductors and Superconductors’ ,NATO Advanced Study Institute, Series B, Vol. 155, D. Jérome and L.G. Caron, eds., Plenum Press, N.Y. (1987), p. 455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Kluwer Academic Publishers

About this chapter

Cite this chapter

Helmle, M., Mehring, M. (1992). High Resolution NMR on Organic Radical Salts. In: Butz, T. (eds) Nuclear Spectroscopy on Charge Density Wave Systems. Physics and Chemistry of Materials with Low-Dimensional Structures, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1299-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1299-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4165-4

  • Online ISBN: 978-94-015-1299-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics