Skip to main content

NMR in Submicron Particles

  • Chapter

Part of the book series: Physics and Chemistry of Materials with Low-Dimensional Structures ((PCMALS,volume 18))

Abstract

The properties of a metal will change if its size is no longer macroscopic. The size regime between large clusters (< 10 nm) and bulk solids (> 100 nm) is often referred to as mesoscopic condensed matter [1]. If the linear dimensions become comparable to characteristic length scales of the system new phenomena appear, that are not present in the bulk. As an example, if the sample dimensions are lowered to such an extent that the wave coherence length L? becomes comparable with the sample size, the transport properties will bear resemblance with a scattering states problem. If the sample size is reduced still further, the distance between the energy levels around the Fermi level will no longer be small compared to k b T. In this final microscopic or cluster limit quantum size effects rather than intraparticle scattering will dominate the physical properties [1]. Because even between 1 and 10 nm the physics of a cluster changes drastically, one also might (as we will do below) let the mesoscopic regime start for particle sizes above 1 nm (roughly 50 atoms) .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Mühlschlegel, Z. Phys. D 20(1991) 289.

    Article  Google Scholar 

  2. I. Yu and W. P. Halperin, J. Low Temp. Phys. 45(1981) 189.

    Article  CAS  Google Scholar 

  3. W. P. Halperin, Rev. Mod. Phys. 58(1986) 533.

    Article  CAS  Google Scholar 

  4. J. J. van der Klink, J. Butter and M. Graetzel, Phys. Rev. B 29(1984) 6352.

    Article  Google Scholar 

  5. H. E. Rhodes, P. K. Wang, H. T. Stokes, C. P. Slichter and J. H. Sinfelt, Phys. Rev. B 26(1982) 3359.

    Google Scholar 

  6. H. E. Rhodes, P. K. Wang, C. D. Makowka, S. L. Rudaz, H. T. Stokes, C. P. Slichter and J. H. Sinfelt, Phys. Rev. B 26(1982) 3569.

    Article  CAS  Google Scholar 

  7. I. Yu, A. A. V. Gibson, E. R. Hunt and W. P. Halperin, Phys. Rev. Lett. 44(1980) 348.

    Article  CAS  Google Scholar 

  8. J. P. Bucher and J. J. van der Klink, Phys. Rev. B 38(1988) 11038.

    Article  CAS  Google Scholar 

  9. J. P. Bucher, J. Buttet, J. J. van der Klink and M. Graetzel, Surface Science 214(1989) 347.

    Article  CAS  Google Scholar 

  10. J. J. van der Klink, in P. Jena et al. (eds), Physics and Chemistry of Finite Systems: From Clusters to Crystals,Vol. 1, Kluwer Academic Publishers, Dordrecht (1992), p. 537.

    Google Scholar 

  11. G. Schmid, Structure and Bonding 62(1985) 51.

    Article  CAS  Google Scholar 

  12. Proceedings of ISSPIC5, Z. Phys. D 20(1991).

    Google Scholar 

  13. W. Harbich, J. Chem. Phys. (1990).

    Google Scholar 

  14. D. Fenske et al., Angew. Chem. Int. Ed. Engl. 32(1993) 1303.

    Article  Google Scholar 

  15. C. P. Slichter, Surf. Sc. 106(1981) 373.

    Article  Google Scholar 

  16. H. T. Stokes, H. E. Rhodes, P.-K. Wang, C. P. Slichter and J. H. Sinfelt, Phys. Rev. B 26(1982) 3575.

    Article  CAS  Google Scholar 

  17. C. D. Makowka, C. P. Slichter and J. H. Sinfelt, Phys. Rev. B 31(1985) 5663.

    Article  CAS  Google Scholar 

  18. J.-P. Ansermet, P.-K. Wang, C. P. Slichter and J. H. Sinfelt, Phys. Rev. B 37(1988) 1417.

    Article  CAS  Google Scholar 

  19. M. Weinert and A. J. Freeman, Phys. Rev. B 28(1983) 2626.

    Article  Google Scholar 

  20. N. W. Ashcroft and N. D. Mermin, Solid State Physics,Holt-Saunders Int. (1976), Chapter 2.

    Google Scholar 

  21. J. P. Bucher and J. J. van der Klink, Helvetia PhysicaActa 61(1988) 760.

    CAS  Google Scholar 

  22. J. Uppenbrink and D. J. Wales, J. Chem. Phys. 96(1992) 8520.

    Article  CAS  Google Scholar 

  23. J. P. Bucherand J. J. van de Klink, J. Phys. Chem. 94(1990) 1209.

    Article  Google Scholar 

  24. M. P. J. van Staveren, H. B. Brom and L. J. de Jongh, Phys. Reports 208(1991) 1.

    Article  Google Scholar 

  25. R. J. Elliott, Phys. Rev. 96(1954) 266.

    Article  CAS  Google Scholar 

  26. C. P. Slichter, Principles of Magnetic Resonance,Springer (1990).

    Google Scholar 

  27. A. Kawabata, J. Phys. Soc. Jap. 29(1970) 902.

    Article  CAS  Google Scholar 

  28. G. G. Khaliullin and M. G. Khusainov, Sov. Phys. JETP 67(1988) 524.

    Google Scholar 

  29. J. Korringa, Physica 16(1950) 601.

    Article  CAS  Google Scholar 

  30. L. I. Schiff, Quantum Mechanics,3rd edition, McGraww-Hill, New York (1968), pp. 83–88.

    Google Scholar 

  31. T. Moriya, J. Phys. Soc. Jap. 18(1963) 516.

    Article  CAS  Google Scholar 

  32. A. Abragam, The Principles of Nuclear Magnetism,Oxford University Press (1961) . In paperback since 1983.

    Google Scholar 

  33. C. Froidevaux and M. Weger, Phys. Rev. Lett. 12(1964) 123.

    Article  CAS  Google Scholar 

  34. B. J. Pronk, H. B. Brom, A. Ceriotti and G. Longoni, Sol State Comm. 64(1987) 7.

    Article  CAS  Google Scholar 

  35. T. Goto, F. Komori and S. Kobayashi, J. Phys. Soc. Jap. 58(1989) 3788.

    Article  CAS  Google Scholar 

  36. H. Goto, S. Katsumoto, S. Kobayashi, J. Phys. Soc. Jap. 62(1993) 1439.

    Article  CAS  Google Scholar 

  37. D. A. Gordon, R. F. Marzke and W. S. Glaunsinger, J. de Phys. 38C2 (1977) 87.

    Google Scholar 

  38. D. van der Putten, H. B. Brom, L. J. de Jongh and G. Schmid, in P. Jena et al. (eds.), Physics and Chemistry of Finite Systems: From Clusters to Crystals,Kluwer Academic Publishers, Dordrecht’ (1992), Vol. 2,p. 1007.

    Google Scholar 

  39. D. van der Putten, H. B. Brom, J. Witteveen, L. J. de Jongh and G. Schmid, Z. Phys. D 26(1993) S 21.

    Article  Google Scholar 

  40. F. Hentsch, N. Winzek, M. Mehring, H. J. Mattausch, A. Simon and R. Kremer, PhysicaC 165(1990) 485.

    Article  CAS  Google Scholar 

  41. M. P. J. van Staveren, H. B. Brom, L. J. de Jongh and G. Schmid, Z. Phys. D 12(1989) 451.

    Article  Google Scholar 

  42. A. C. Kolbert, H. J. M. de Groot, D. van der Putten, H. B. Brom, L. J. de Jongh and G. Schmid, Z. Phys. D (1993) S 24.

    Article  CAS  Google Scholar 

  43. G. Balzer-Jöllenbeck, O. Kanert and J. Steinen, Sol. State Comm. 65(1988) 303.

    Article  Google Scholar 

  44. M. Rubinstein, H. A. Resing, T. L. Reinecke and K. L. Ngai, Phys. Rev. Lett. 34(1975) 1444.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Kluwer Academic Publishers

About this chapter

Cite this chapter

Brom, H.B., Van Der Putten, D., De Jongh, L.J. (1994). NMR in Submicron Particles. In: De Jongh, L.J. (eds) Physics and Chemistry of Metal Cluster Compounds. Physics and Chemistry of Materials with Low-Dimensional Structures, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1294-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1294-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4369-6

  • Online ISBN: 978-94-015-1294-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics