Skip to main content

Part of the book series: Computational Imaging and Vision ((CIVI,volume 23))

  • 182 Accesses

Abstract

The past two decades of magnetic resonance imaging (MRI) research witnessed the development of noninvasive technologies that are capable of both motion quantification and spatiotemporal resolution. Representative examples include the MR tagging [1–5] and the phase contrast MR velocity mapping techniques [6–10]. Among clinical applications that have been established, or are being developed, use of the technologies for evaluating cardiac motion may be one that is most rewarding, yet exceedingly challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Zerhouni, D. Parish, W. Rogers, A. Yang, and E. Shapiro. Human heart: tagging with MR imaging — a method for noninvasive assessment of myocardial motion. Radiology 169: 59–63 (1988).

    PubMed  CAS  Google Scholar 

  2. L. Axel and L. Dougherty. MR imaging of motion with spatial modulation of magnetization. Radiology 172: 349–350 (1989).

    PubMed  CAS  Google Scholar 

  3. L. Axel and L. Dougherty. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology 172: 349–350 (1989).

    PubMed  CAS  Google Scholar 

  4. L. Axel. Three-dimensional MR imaging of heart wall motion. Radiology 173: 233 (1989)

    Google Scholar 

  5. E. R. McVeigh and E. Zerhouni. Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology 180: 677–683 (1991)

    PubMed  CAS  Google Scholar 

  6. P. Van Dijk. Direct cardiac NMR imaging of heart wall and blood flow velocity. Journal Computer Assisted Tomography 8: 429–436 (1984).

    Article  Google Scholar 

  7. G. L. Nayler, D. N. Firmin, and D. B. Longmore. Blood flow imaging by cine magnetic resonance. Journal of Computer Assisted Tomography 10:715–722 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. N. J. Pelc, R. J. Herfkens, A. Shimakawa, and D. R. Enzmann. Phase Contrast Cine Magnetic Resonance Imaging. Magnetic Resonance Quarterly 7: 229–254(1991).

    PubMed  CAS  Google Scholar 

  9. V J. Wedeen. Magnetic resonance imaging of myocardial kinematics. Technique to detect, localize, and quantify the strain rates of active human myocardium. Magn. Reson. Med. 27: 52–67 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. N. J. Pelc, R. J. Herfkens, and L. R. Pelc. 3D analysis of myocardial motion and deformation with phase contrast cine MRI. Proc. SMRM. 18 (1992).

    Google Scholar 

  11. M. V. Herman and R. Gorlin. Implications of left ventricular asynergy. American Journal of Cardiology, 23:538–547, (1969).

    Article  PubMed  CAS  Google Scholar 

  12. W. A. Baxley and T J. Reeves. Abnormal regional myocardial performance in coronary artery disease. Progress in Cardiovascular Diseases, 13:405–421, (1971).

    Article  PubMed  CAS  Google Scholar 

  13. M. V. Herman, R. A. Heinle, M. D. Klein, and R. Gorlin. Localized disorders in myocardial contraction. New England Journal of Medicine 227:222–232 (1967).

    Article  Google Scholar 

  14. J. S. Borer, S. L. Bacharach, M. V. Green, K. M. Kent, S. E. Epstein, and G. S. Johnston. Real-time radionuclide cineangiography in the noninvasive evaluation of global and regional left ventricular function at rest and during exercise in patients with coronary-artery disease. New England Journal of Medicine 296:839–844 (1977).

    Article  PubMed  CAS  Google Scholar 

  15. J. Tillisch, R. Brunken, R. Marshall, M. Schwaiger, M. Mandelkern, M. Phelps, and H. Schelbert. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. New England Journal of Medicine 314:884–888 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. A. N. Lieberman, J. L. Weiss, B. I. Judgutt, and et al. Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 63:739–746 (1981).

    Article  PubMed  CAS  Google Scholar 

  17. J. F. Ren, M. N. Kotier, A. H. Hakki, I. P. Panidis, G. S. Mintz, and J. Ross. Quantification of regional left ventricular function by two-dimensional echocardiography. 1. Pattern of contraction of the normal ventricle. American Heart Journal 110:552–560 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. P. E. Assmann, C. J. Slager, S. G. Van der Borden, J. G. P. Tijssen, J. A. Oomen, and J. R. Roelandt. Comparison of models for quantitative left ventricular wall motion analysis from two-dimensional echocardiograms during acute myocardial infarction. American Journal of Cardiology 71:1262–1269 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. R. F. Mattrey and C. B. Higgins. Detection of regional myocardial dysfunction during ischemia with computerized tomography: documentation and physiologic basis. Investigative Radiology 17:329–335 (1982).

    Article  PubMed  CAS  Google Scholar 

  20. D. Farmer, M. J. Lipton, C. B. Higgins, H. Ringertz, P. B. Dean, R. Sievers, and D. P. Boyd. In vivo assessment of left ventricular wall and chamber dynamics during transient myocardial ischemia using cine computed tomography. American Journal of Cardiology 55:560–565 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. M. R. Fisher, G. K. von Schulthess, and C. B. Higgins. Multiphasic cardiac magnetic resonance imaging: normal regional left ventricular wall thickening. American Journal of Roentgenology 145:27–40 (1985).

    PubMed  CAS  Google Scholar 

  22. C. B. Higgins, W. Holt, P. Pflugfelder, and U. Sechtem. Functional evaluation of the heart with magnetic resonance imaging. Magnetic Resonance in Medicine 6:121–139 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. H. Sakuma, N. Fujita, T K. F. Foo, G. R. Caputo, S. J. Nelson, J. Hartiala, A. Shimakawa, and C. B. Higgins. Evaluation of left ventricular volume and mass with breath-hold cine MR imaging. Radiology 188:377–380 (1993).

    PubMed  CAS  Google Scholar 

  24. E. R. Holman, H. W. Vliegen, R. J. van der Geest, J. H. C. Reiber, P. R. M. van Dijkman, A. van der Laarse, A. de Roos, and E. E. van der Wall. Quantitative analysis of regional left ventricular function after myocardial infarction in the pig assessed with cine magnetic resonance imaging. Magnetic Resonance in Medicine 34:161–169 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. H. L. Falsetti, M. L. Marcus, R. E. Kerber, and D. J. Skorton. Quantification of myocardial ischemia and infarction by left ventricular imaging. Circulation 63: 747–751 (1981).

    Article  PubMed  CAS  Google Scholar 

  26. L. Axel, R. C. Gonçalves, and D. Bloomgarden. Regional heart wall motion: two-dimensional analysis and functional imaging with MR imaging. Radiology 183: 745–750(1992).

    PubMed  CAS  Google Scholar 

  27. N. B. Ingels, G. T. Daughters, E. B. Stinson, and E. L. Alderman. Measurements of midwall dynamics in intact man by radiography of surgically implanted markers. Circulation 52:859–867 (1975).

    PubMed  Google Scholar 

  28. C. J. Slager, T. E. H. Hooghoudt, P. W. Serruys, J. C. H. Schuurbiers, J. H. C. Reiber, G. T. Meester, P. D. Verdouw, and P. G. Hugenholtz. Quantitative assessment of regional left ventricular motion using endocardial landmarks. Journal of the American College of Cardiology 7:317–326 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. H. C. Kim, B. G. Min, M. M. Lee, J. D. Seo, Y. W. Lee, and M. C. Han. Estimation of local cardiac wall deformation and regional wall stress from biplane coronary cineangiograms. IEEE Trans. Biomed. Eng. 32:503–511 (1985).

    Article  PubMed  CAS  Google Scholar 

  30. C. W. Chen and T. S. Huang. Epicardial motion and deformation estimation from coronary artery bifurcation points. Proc. of 3rd International Conference on Computer Vision, pp. 456–459 (1990).

    Google Scholar 

  31. A. A. Young. Epicardial deformation from coronary cineangiograms. In L. Glass, P. Hunter, A. McCulloch, eds., Theory of Heart: biomechanics, biophysics, and nonlinear dynamics of cardiac function New York, Springer-Verlag, pp. 175–207(1991).

    Google Scholar 

  32. J. S. Rankin, P. A. McHale, C. E. Arentzen, D. Ling, J. C. Greenfield, and R. W. Anderson. The three-dimensional dynamic geometry of the left ventricle in the conscious dog. Circulation Research 39:304–313 (1976).

    PubMed  CAS  Google Scholar 

  33. P. Theroux, J. J. Ross, D. Franklin, J. Covell, C. Bloor, and S. Sasayama. Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circulation Research 40:158–165, (1977).

    PubMed  CAS  Google Scholar 

  34. F. J. Villarreal, L. K. Waldman and W. Y. W. Lew. Technique for measuring regional two-dimensional finite strains in canine left ventricle. Circulation Research 62:711–721 (1988).

    PubMed  CAS  Google Scholar 

  35. J. H. Myers, M. C. Stirling, M. Choy, A. J. Buda, and K. P. Gallagher. Direct measurement of inner and outer wall thickening dynamics with epicardial echocardiography. Circulation 74:164–172 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. D. C. Harrison, A. Goldblatt, E. Braunwald, G. Glick, and D. T. Mason. Studies on cardiac dimensions in intact unanesthetized man. Circulation Research, 13:448–467 (1963).

    PubMed  CAS  Google Scholar 

  37. R. W. Brower, H. J. ten Katen, and G. T. Meester. Direct method for determining regional myocardial shortening after bypass surgery from radiopaque markers in man. American Journal of Cardiology 41:1222–1229 (1978).

    Article  PubMed  CAS  Google Scholar 

  38. N. B. Ingels, G. T. Daughters, E. B. Stinson, and E. L. Alderman. Evaluation of methods for quantitating left ventricular segmental wall motion in man using myocardial markers as a standard. Circulation 61:966–972 (1980).

    PubMed  Google Scholar 

  39. G. Daughters, W. Sanders, D. Miller, A. Schwarzkopf, C. Mead, and N. Ingels. A comparison of two analytical systems for 3-D reconstruction from biplane videoradiograms. Computers in Cardiology, 15:79–82 (1989).

    Google Scholar 

  40. E. L. Hahn. Detection of sea-water motion by nuclear precession. Journal of Geophysical Research 65:776–777 (1960).

    Article  Google Scholar 

  41. Y. Zhu, M. Drangova, and N. J. Pelc. Fourier tracking of myocardial motion using cine PC data. Magn. Reson. Med. 35: 471–480 (1996).

    Article  PubMed  CAS  Google Scholar 

  42. A. A. Young and L. Axel. Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization — a model-based approach. Radiology 185:241–247 (1992).

    PubMed  CAS  Google Scholar 

  43. Y Zhu, M. Drangova and N. J. Pelc. Estimation of deformation gradient and strain from cine-PC velocity data. IEEE Transactions on Medical Imaging vol. 16, no. 6, pp. 840–851 (1997).

    Article  PubMed  CAS  Google Scholar 

  44. N. R. Clark, N. Reichek, P. Bergey, E. A. Hoffman, D. Brownson, L. Palmon, and L. Axel. Circumferential Myocardial Shortening in the Normal Human Left Ventricle. Circulation 84: 67–74 (1991).

    PubMed  CAS  Google Scholar 

  45. R. J. Herfkens, N. J. Pelc, L. R. Pelc, and J. R. Sayre. Right ventricular strain measured by phase contrast MRI. Proc. SMRM. 163 (1991).

    Google Scholar 

  46. R. T. Constable, K. M. Rath, A. J. Sinusas, and J. C. Gore. Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR mapping. Magn. Reson. Med. 32: 33–42 (1994).

    Article  PubMed  CAS  Google Scholar 

  47. N. J. Pelc, M. Drangova, L. R. Pele, Y. Zhu, D. Noll, B. Bowman, and R. J. Herfkens. Tracking of cyclical motion using phase contrast cine MRI velocity data. JMRI 5:339–345 (1995).

    Article  PubMed  CAS  Google Scholar 

  48. A. Lingamneni, P. A. Hardy, K. Powell, N. J. Pelc, and R. D. White. Validation of cine phase-contrast MR imaging for motion analysis. JMRI 5: 331–338 (1995).

    Article  PubMed  CAS  Google Scholar 

  49. D. Terzopoulos and D. Metaxas. Dynamic 3D models with local and global deformations: deformable superquadrics. PAMI, vol. 13, no. 7, pp. 703–714 (1991).

    Article  Google Scholar 

  50. W. G. O’Dell, C. C. Moore, W. C. Hunter, E. A. Zerhouni, and E. R. McVeigh. Displacement field fitting for calculating 3D myocardial deformations from tagged MR images. Radiology 195:829–835 (1995).

    PubMed  Google Scholar 

  51. T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall (1987).

    Google Scholar 

  52. A. Pentland and B. Horowitz. Recovery of nonrigid motion and structure. PAMI, vol. 13, no. 7, pp. 730–742 (1991).

    Article  Google Scholar 

  53. F. G. Meyer, R. T. Constable, A. J. Sinusas, and J. S. Duncan. Tracking Myocardial Deformation Using Phase Contrast MR Velocity Fields: A Stochastic Approach. IEEE Trans. Med. Imaging vol. 15, no. 4: 453–465 (1996).

    Article  PubMed  CAS  Google Scholar 

  54. Y. Zhu and N. J. Pelc. Myocardial function analysis using a spatiotemporal finite element mesh model and cine-PC velocity data. Proc. of the 5th meeting of the ISMRM, p. 464 (1997).

    Google Scholar 

  55. Y. Zhu and N. J. Pelc. A spatiotemporal finite element mesh model of cyclical deforming motion and its application in myocardial motion analysis using phase contrast MR images. Proc. IEEE International Conference on Image Processing, vol II, pp. 117–120 (1997).

    Google Scholar 

  56. Y. Zhu and N. J. Pelc. A spatiotemporal model of cyclic kinematics and its application to analyzing nonrigid motion with MR velocity images. IEEE Transactions on Medical Imaging vol. 18, no. 7, pp. 557–569 (1999).

    Article  PubMed  CAS  Google Scholar 

  57. Y. Zhu, M. Drangova, and N. J. Pelc. Fourier tracking of myocardial motion using cine PC data. Proc. of the 2nd meeting of the Society of Magnetic Resonance, p. 1477 (1994).

    Google Scholar 

  58. M. Drangova, Y Zhu, B. S. Bowman, and N. J. Pelc. In vitro verification of myocardial-motion tracking from phase-contrast velocity data. Magnetic Resonance Imaging, 16:863–870 (1998).

    Article  PubMed  CAS  Google Scholar 

  59. A. Amini and J. Duncan. Pointwise tracking of left-ventricular motion in 3-D. Proc. IEEE Workshop on Visual Motion, pp. 294–298 (1991).

    Google Scholar 

  60. S. K. Mishra and D. B. Goldgof. Motion analysis and modeling of epicardial surfaces from point and line correspondences. Proc. IEEE Workshop on Visual Motion, pp. 300–305 (1991).

    Google Scholar 

  61. A. A. Young, L. Axel, L. Dougherty, D. K. Bogen, and C. S. Parenteau. Validation of Tagging with MR Imaging to Estimate Material Deformation. Radiology 188:101–108(1993).

    PubMed  CAS  Google Scholar 

  62. M. Drangova, B. Bowman, and N. J. Pelc. Physiologic motion phantom for MRI applications. JMRI 6:513–518 (1996).

    Article  PubMed  CAS  Google Scholar 

  63. Y. Zhu and N. J. Pelc. Three-dimensional motion tracking with volumetric phase contrast MR velocity imaging. Journal of Magnetic Resonance Imaging, 9:111–118 (1999).

    Article  PubMed  CAS  Google Scholar 

  64. D. N. Firmin, P. D. Gatehouse, G. Z. Yang, P. Jhooti, and J. Keegan. A 7-dimensional echo-planar flow imaging technique using a novel k-space sampling scheme with velocity compensation. Proc. of the 5th meeting of the ISMRM, p. 118(1997).

    Google Scholar 

  65. D. K. Sodickson and W. J. Manning. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn. Reson. Med. 38: 591–603 (1997).

    Article  PubMed  CAS  Google Scholar 

  66. Y Zhu. Quantifying cyclic motion and deformation with magnetic resonance velocity images. Ph.D. Dissertation, Department of Electrical Engineering, Stanford University, Palo Alto, California, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zhu, Y., Pelc, N.J. (2001). Myocardial Spatiotemporal Tracking. In: Amini, A.A., Prince, J.L. (eds) Measurement of Cardiac Deformations from MRI: Physical and Mathematical Models. Computational Imaging and Vision, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1265-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1265-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5919-2

  • Online ISBN: 978-94-015-1265-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics