Efficient Classical Simulation of Continuous Variable Quantum Information Processes

  • Stephen D. Bartlett
  • Barry C. Sanders
  • Samuel L. Braunstein
  • Kae Nemoto
Chapter

Abstract

We obtain sufficient conditions for the efficient simulation of a continuous variable quantum algorithm or process on a classical computer. The resulting theorem is an extension of the Gottesman-Knill theorem to continuous variable quantum information. For a collection of harmonic oscillators, any quantum process that begins with unentangled Gaussian states, performs only transformations generated by Hamiltonians that are quadratic in the canonical operators, and involves only measurements of canonical operators (including finite losses) and suitable operations conditioned on these measurements can be simulated efficiently on a classical computer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Gottesman, in Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics, edited by S. P. Corney et al., (International Press, Cambridge, MA, 1999), p. 32.Google Scholar
  2. [2]
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000), p. 464.MATHGoogle Scholar
  3. [3]
    E. Knill, quant-ph/0108033; B. M. Terhal and D. P. DiVincenzo, quantph/0108010.Google Scholar
  4. [4]
    S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869 (1998).ADSCrossRefGoogle Scholar
  5. [5]
    A. Furusawa et al., Science 282, 706 (1998).ADSCrossRefGoogle Scholar
  6. [6]
    T. C. Ralph, Phys. Rev. A 61, 010303(R) (2000).MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M. Hillery, Phys. Rev. A 61, 022309 (2000).ADSCrossRefGoogle Scholar
  8. [8]
    M. D. Reid, Phys. Rev. A 62, 062308 (2000).ADSCrossRefGoogle Scholar
  9. [9]
    D. Gottesman and J. Preskill, Phys. Rev. A 63, 022309 (2001).ADSCrossRefGoogle Scholar
  10. [10]
    S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).MathSciNetADSMATHCrossRefGoogle Scholar
  11. [11]
    R. P. Feynman, Found. Phys. 16, 507 (1986).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S. L. Braunstein, Phys. Rev. Lett. 80, 4084 (1998).ADSCrossRefGoogle Scholar
  13. [13]
    S. L. Braunstein, Nature (London) 394, 47 (1998).ADSCrossRefGoogle Scholar
  14. [14]
    D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).MATHGoogle Scholar
  15. [15]
    D. Gottesman et al., Phys. Rev. A 64, 012310 (2001).ADSCrossRefGoogle Scholar
  16. [16]
    H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory 26, 78 (1980).MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    G. J. Milburn and D. F. Walls, Phys. Rev. A 28, 2065 (1983).ADSCrossRefGoogle Scholar
  18. [18]
    S. D. Bartlett and B. C. Sanders, Phys. Rev. A 65, 042310 (2002).ADSCrossRefGoogle Scholar

Copyright information

© American Physical Society 2002

Authors and Affiliations

  • Stephen D. Bartlett
    • 1
  • Barry C. Sanders
    • 1
  • Samuel L. Braunstein
    • 2
  • Kae Nemoto
    • 2
  1. 1.Department of Physics and Centre for Advanced Computing -Algorithms and CryptographyMacquarie UniversitySydneyAustralia
  2. 2.InformaticsBangor UniversityBangorUK

Personalised recommendations