Advertisement

S

  • M. Hazewinkel
Chapter
  • 725 Downloads
Part of the Encyclopaedia of Mathematics book series (ENMA, volume 8)

References

  1. [1]
    Spanier, E.H.: ‘Duality and S-theory’, Bull. Amer. Math. Soc. 62(1956), 194–203.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Spanier, E.H. and Whitehead, J.H.C.: ‘Duality in homotopy theory’, Mathematika 2, no. 3 (1955), 56–80.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Spanier, E.H. and Whitehead, J.H.C.: ‘Duality in relative homotopy theory’, Ann. of Math. 67, no. 2 (1958), 203–238.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Barratt, M.G.: ‘Track groups 1; 2’, Proc. London Math. Soc. 5 (1955), 71–106; 285–329.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Spanier, E.H. and Whitehead, J.H.C.: ‘The theory of carriers and S-theory’, in Algebraic Geometry and Topology (A Symp. in honor of S. Lefschetz), Princeton Univ. Press, 1957, pp. 330–360.Google Scholar
  6. [6A]
    Eckmann, B.and Hilton, P.J.: ‘Groupes d’homotopie et dualité. Groupes absolus’, C.R. Acad. Sci. Paris 246, no. 17 (1958), 2444–2447.MathSciNetzbMATHGoogle Scholar
  7. [6B]
    Eckmann, B. and Hilton, P.J.: ‘Groupes d’homotopie et dualité. Suites exactes’, C.R. Acad. Sci. Paris 246, no. 18 (1958), 2555–2558.MathSciNetzbMATHGoogle Scholar
  8. [6C]
    Eckmann, B. and Hilton, P.J.: ‘Groupes d’homotopie et dualité. Coefficients’, C.R. Acad. Sci. Paris 246, no. 21 (1958), 2991–2993.MathSciNetzbMATHGoogle Scholar
  9. [6D]
    Eckmann, B. and Hilton, P.J.: ‘Transgression homotopique et cohomologique’, C.R. Acad. Sci. Paris 247, no. 6 (1958), 620–623.MathSciNetzbMATHGoogle Scholar
  10. [6E]
    Eckmann, BB. and Hilton, P.J.: ‘Décomposition homologique d’un polyhèdre simplement connexe’, C.R. Acad. Sci. Paris 248, no. 14 (1959), 2054–2056.MathSciNetzbMATHGoogle Scholar
  11. [7]
    Spanier, E.H.: Algebraic topology, McGraw-Hill, 1966.zbMATHGoogle Scholar
  12. [8]
    Whitehead, G.W.: Recent advances in homotopy theory, Amer. Math. Soc, 1970.zbMATHGoogle Scholar
  13. [1]
    Kagan, V.F.: The foundations of geometry, 1, Moscow-Leningrad, 1949 (in Russian).Google Scholar
  14. [2]
    Pogorelov, A. V.: Foundations of geometry, Noordhoff, 1966 (translated from the Russian).zbMATHGoogle Scholar
  15. [A1]
    Bonola, R.: Non-Euclidean geometry, Dover, reprint, 1955, p. 23.zbMATHGoogle Scholar
  16. [A2]
    Coxeter, H.S.M.: Non-Euclidean geometry, Univ. Toronto Press, 1965, p. 5, 190.Google Scholar
  17. [A3]
    Efimov, N.V.: Higher geometry, Mir, 1980 (translated from the Russian).zbMATHGoogle Scholar
  18. [A4]
    Borsuk, K. and Szmielew, W.:Foundations of geometry, North-Holland, 1960.zbMATHGoogle Scholar
  19. [1]
    Nemytskiǐ, V.V. and Stepanov, V.V.: Qualitative theory of differential equations, Princeton Univ. Press, 1960 (translated from the Russian).Google Scholar
  20. [1]
    Bautin, N.N. and Leontovich, E.A.: Methods and means for a qualitative investigation of dynamical systems on the plane, Moscow, 1976 (in Russian).Google Scholar
  21. [A1]
    Guckenheimer, J. and Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, 1983.zbMATHGoogle Scholar
  22. [A2]
    Andronov, A.A., Leontovich, E.A., Gordon, I.I. and Maier, A.G.: Qualitative theory of second-order dynamic systems, Wiley, 1973 (translated from the Russian).zbMATHGoogle Scholar
  23. [A1]
    Hirsch, M.W. and Smale, S.: Differential equations, dynamical systems, and linear algebra, Acad. Press, 1974, p. 190ff.zbMATHGoogle Scholar
  24. [A2]
    Chillingworth, D.R.J.: Differential topology with a view to applications, Pitman, 1976, p. 150ff.zbMATHGoogle Scholar
  25. [A1]
    Hirsch, M.W.: Differential topology, Springer, 1976, Chapt. 6.zbMATHGoogle Scholar
  26. [A2]
    Szép, J. and Forgo, F.: Introduction to the theory of games, Reidel, 1985, p. 171; 199.zbMATHGoogle Scholar
  27. [1]
    Debye, P.: ‘Näherungsformeln für die Zylinderfunktionen für grosse Werte des Arguments und unbeschränkt veränderliche Werte des Index’, Math. Ann. 67 (1909), 535–558.MathSciNetzbMATHGoogle Scholar
  28. [2]
    Riemann, B.: Mathematische Werke, Dover, reprint, 1953.zbMATHGoogle Scholar
  29. [3]
    Erdélyi,A.: Asymptotic expansions, Dover, reprint, 1956.zbMATHGoogle Scholar
  30. [4]
    Bruin, N.G. de: Asymptotic methods in analysis, Dover, reprint, 1981.Google Scholar
  31. [5]
    Evgrafov, M.A.: Asymptotic estimates and entire functions, Gordon & Breach, 1962 (translated from the Russian).Google Scholar
  32. [6]
    Copson, E.T.: Asymptotic expansions, Cambridge Univ. Press, 1965.zbMATHGoogle Scholar
  33. [7]
    Olver, F.W.J.: Asymptotics and special functions, Acad. Press, 1974.Google Scholar
  34. [8]
    Riekstyn’sh, E.Ya.: Asymptotic expansions of integrals, 1–2, Riga, 1974–1977 (in Russian).Google Scholar
  35. [9]
    Fedoryuk, M.V.: The saddle-point method, Moscow, 1977 (in Russian).zbMATHGoogle Scholar
  36. [A1]
    Wong, R.: Asymptotic approximations of integrals, Acad. Press, 1989.zbMATHGoogle Scholar
  37. [1]
    Bakel’man, I.Ya., Verner, A.L. and Kantor, B.E.: Introduction to differential geometry Un the large’, Moscow, 1973 (in Russian).Google Scholar
  38. [2]
    Shefel’, S.Z.: Studies on the geometry of saddle-like surfaces, Novosibirsk, 1963 (in Russian).Google Scholar
  39. [A1]
    Nitsche, J.C.C.: Vorlesungen über Minimalflächen, Springer, 1975, §455.zbMATHGoogle Scholar
  40. [1]
    Doob, J.L.: Stochastic processes, Chapman and Hall, 1953.zbMATHGoogle Scholar
  41. [2]
    Cramér, H. and Leadbetter, M.R.: Stationary and related stochastic processes, Wiley, 1967.zbMATHGoogle Scholar
  42. [3]
    Belyaev, Yu.K.: ‘Continuity and Hölder’s conditions for sample functions of stationary Gaussian processes’, in Proc. 4-th Berkeley Symp. Math. Stat. Probab., Vol. 2, Univ. California Press, 1961, pp. 23–33.Google Scholar
  43. [4]
    Ostrovskiǐ, E.I.: ‘On the local structure of Gaussian fields’, Soviet Math. Dokl. 11, no. 6 (1970), 1425–1427. (Dokl. Akad. Nauk SSSR 195, no. 1 (1970), 40–42)Google Scholar
  44. [5]
    Nisio, M.: ‘On the continuity of stationary Gaussian processes’, Nagoya Math. J. 34 (1969), 89–104.MathSciNetzbMATHGoogle Scholar
  45. [6]
    Dudley, R.M.: ‘Gaussian processes on several parameters’, Ann. of Math. Statist. 36, no. 3 (1965), 771–788.MathSciNetzbMATHGoogle Scholar
  46. [7]
    Fernique, X.: ‘Continuité des processus Gaussiens’, C.R. Acad. Sci. Paris Sér. I Math. 258 (1964), 6058–6060.MathSciNetzbMATHGoogle Scholar
  47. [8]
    Yadrenko, M.I.: ‘Local properties of sample functions of random fields’, Visnik Kiǐv. Univ. Ser. Mat. Mekh. 9 (1967), 103–112 (in Ukrainian). English abstract.Google Scholar
  48. [9]
    Kawada, T.: ‘On the upper and lower class for Gaussian processes with several parameters’, Nagoya Math. J. 35 (1969), 109–132.MathSciNetzbMATHGoogle Scholar
  49. [10]
    Belyaev, Yu.K.: ‘Analytical random processes’, Theory Probab. Appl. 4, no. 4 (1959), 402–409. (Teor. Veroyatnost. i Primenen. 4, no. 4 (1959), 437–444)MathSciNetGoogle Scholar
  50. [11]
    Slutskiǐ, E.E.: ‘Qualche proposizione relativa alla teoria delle funzioni aluatorie’, Giorn. Inst. Ital. Attuari 8, no. 2 (1937), 183–199.Google Scholar
  51. [12]
    Fernique, X.M.: ‘Regularité de trajectoires des fonctions aleatoires gaussiennes’, in J.P. Conze, J. Cani and X.M. Fernique (eds.): Ecole d’Ete de Probabilité de Saint-Flour IV-1974, Springer, 1975, pp. 1–96.Google Scholar
  52. [A1]
    Alder, R.J.: The geometry of random fields, Wiley, 1981.Google Scholar
  53. [1]
    Smirnov, N.V. and Dunin-Barkovskiǐ,I.V.: Mathematische Statistik in der Technik, Deutsch. Verlag Wissenschaft., 1969 (translated from the Russian).Google Scholar
  54. [2]
    Belyaev, Yu.K.: Probability methods of sampling control, Moscow, 1975 (in Russian).Google Scholar
  55. [3]
    Kendall, M.G. and Stuart, A.: The advanced theory of statistics. Distribution theory. Griffin, 1969.Google Scholar
  56. [A1]
    Juran, J.M. (ed.): Quality control handbook, McGraw-Hill, 1962.Google Scholar
  57. [1]
    Wilks, S.S.: Mathematical statistics, Wiley, 1962.zbMATHGoogle Scholar
  58. [A1]
    Feller, W.: An introduction to probability theory and its applications, 1, Wiley, 1957, Chapt. 1.zbMATHGoogle Scholar
  59. [1]
    Sard, A.: ‘The measure of critical values of differentiable maps’, Bull. Amer. Math. Soc. 48 (1942), 883–890.MathSciNetzbMATHGoogle Scholar
  60. [A1]
    Cohn, P.M.: Algebra, 1, Wiley, 1982, p. 70.zbMATHGoogle Scholar
  61. [A2]
    Rektorys, K.: Applicable mathematics, Iliffe, 1969, p. 270; 290.zbMATHGoogle Scholar
  62. [1]
    Gromoll, D., Klingenberg, W.and Meyer, W.: Riemannsche Geometrie im Grossen, Springer, 1968.zbMATHGoogle Scholar
  63. [2]
    Rashewski, P.K. [P.K. Rashevskiǐ]: Riemannsche Geometrie und Tensoranalyse, Deutsch. Verlag Wissenschaft., 1959 (translated from the Russian).Google Scholar
  64. [A1]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 1–2, Wiley (Interscience), 1963–1969.zbMATHGoogle Scholar
  65. [A1]
    Breiman, L.: Statistics with a view towards applications, Houghton-Mifflin, 1973, pp. 34–40.Google Scholar
  66. [1]
    Rastrigin, L.A.: Systems of extremal control, Moscow, 1974 (in Russian).Google Scholar
  67. [2]
    Evtushenko, Yu.G.: Numerical optimization techniques, Optim. Software, 1985 (translated from the Russian).Google Scholar
  68. [3]
    Dixon, L.C.W. and Szegö, G.P. (eds.): Towards global optimisation, 1–2, North-Holland, 1975–1978.zbMATHGoogle Scholar
  69. [A1]
    Cantor, G.: ‘Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen’, Math. Ann. 5 (1872), 123–132.MathSciNetzbMATHGoogle Scholar
  70. [A2]
    Mrowka, S.: ‘On completely regular spaces’, Fund. Math. 41 (1954), 105–106.MathSciNetzbMATHGoogle Scholar
  71. [A3]
    Roitman, J.: ‘Superatomic Boolean algebras’, in J.D. Monk and R. Bonnet (eds.): Handbook of Boolean Algebras, North-Holland, 1989, Chapt. 19; pp. 719–740.Google Scholar
  72. [A1]
    Eden, R.J., Landshoff, P.V., Olive, D.I. and Polkinghorne, J.C.: The analytic S-matrix, Cambridge Univ. Press, 1966.zbMATHGoogle Scholar
  73. [A2]
    Barut, A.O.: The theory of the scattering matrix, MacMillan, 1967.zbMATHGoogle Scholar
  74. [A3]
    Heisenberg, W.: Z Physik 120 (1942–1943), 513; 678.MathSciNetzbMATHGoogle Scholar
  75. [A4]
    Messiah, A.: Quantum mechanics, I, North-Holland, 1961, Chapt. II.Google Scholar
  76. [A5]
    Iagolnitzer, D.: The S matrix, North-Holland, 1978.Google Scholar
  77. [A6]
    Chow, G.F.: The analytic S matrix, Benjamin, 1966.Google Scholar
  78. [1]
    Schauder, J.: ‘Ueber lineare elliptische Differentialgleichungen zweiter Ordnung’. Math. Z. 38. no. 2 (1934). 257–282.MathSciNetGoogle Scholar
  79. [2]
    Schauder J.: ‘Numerische Abschätzungen in elliptischen linearen Differentialgleichungen’. Studia Math. 5 (1935). 34–42.Google Scholar
  80. [3]
    Bers, L., John, F. and Schechter, M.: Partial differential equations, Interscience, 1964.zbMATHGoogle Scholar
  81. [4]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  82. [5]
    Bitsadze, A.V.: Some classes of partial differential equations, Moscow, 1981 (in Russian).zbMATHGoogle Scholar
  83. [6]
    Berezanskiy, Yu.M. [Yu.M. Berezanskiǐ]: Expansion in eigenfunctions of selfadjoint operators. Amer. Math. Soc., 1968 (translated from the Russian).Google Scholar
  84. [7]
    Ladyzhenskaya, O.A. and Ural’tseva, N.N.: Linear and quasilinear elliptic equations, Acad. Press, 1968 (translated from the Russian).zbMATHGoogle Scholar
  85. [A1]
    Ciliberto, C.: ‘Formule di maggiorazione e teoremi di esistenza per le soluzioni delle equazioni paraboliche in due variabili’, Ricerche Mat. 3 (1954), 40–75.MathSciNetzbMATHGoogle Scholar
  86. [A2]
    Friedman, A.: Partial differential equations of parabolic type, Prentice-Hall, 1964.zbMATHGoogle Scholar
  87. [A3]
    Gilbarg, D. and Trudinger, N.S.: Elliptic partial differential equations of second order, Springer, 1977.zbMATHGoogle Scholar
  88. [1]
    Schauder, J.: ‘Der Fixpunktsatz in Funktionalräumen’, Stud. Math. 2 (1930), 171–180.zbMATHGoogle Scholar
  89. [2]
    Lyusternik, L.A. and Sobolev, V.I.: Elements of functional analysis, Hindushtan Publ. Comp., 1974 (translated from the Russian).Google Scholar
  90. [3]
    Dunford, N. and Schwartz, J.T.: Linear operators. General theory, 1, Interscience, 1958.Google Scholar
  91. [4]
    Edwards, R.E.: Functional analysis, Holt, Rinehart & Winston, 1965.zbMATHGoogle Scholar
  92. [5]
    Nirenberg, L.: Topics in nonlinear functional analysis, New York Univ., 1974.zbMATHGoogle Scholar
  93. [A1]
    Dugundji, J. and Granas, A.: Fixed-point theory, I, PWN, 1982.zbMATHGoogle Scholar
  94. [A2]
    Tychonoff, A.N. [A.N. Tikhonov]: ‘Ein Fixpunktsatz’, Math. Ann. 111 (1935), 767–776.MathSciNetGoogle Scholar
  95. [A3]
    Istrăţescu, V.I.: Fixed point theory, Reidel, 1981.zbMATHGoogle Scholar
  96. [A4]
    Ryll-Nardzewski, C.: ‘On fixed points of semi-groups of endomorphisms of linear spaces’, in Proc. 5-th Berkeley Symp. Probab. Math. Stat., Vol. 2: 1, Univ. Calif. Press, 1967, pp. 55–61.Google Scholar
  97. [1]
    Tanaev, V.S. and Shkurba, V.V.: Introduction to scheduling theory, Moscow, 1975 (in Russian).Google Scholar
  98. [2]
    Conway, R.W., Maxwell, W.L. and Miller, L.W.: Theory of scheduling, Adison-Wesley, 1967.zbMATHGoogle Scholar
  99. [3]
    Bruno, J.L., et al. (eds.): Computer and job-shop scheduling theory, Wiley. 1976.Google Scholar
  100. [4]
    Gonzalez, M.J.: ‘Deterministic processor scheduling’, Comput. Surveys 9, no. 3 (1977), 173–204.MathSciNetzbMATHGoogle Scholar
  101. [5]
    Lenstra, J.K. and Rinnooy Kan, A.H.G.: ‘Complexity of scheduling under precedence constraints’, Operations Research 26, no. 1 (1978), 22–35.MathSciNetzbMATHGoogle Scholar
  102. [6]
    Garey, M.R., Graham, R.L. and Johnson, D.S.: ‘Performance guarantees for scheduling algorithms’, Operations Research 26, no. 1 (1978), 3–21.MathSciNetzbMATHGoogle Scholar
  103. [A1]
    Johnson, S.M.: ‘Optimal two- and three-stage production schedules with setup times included’, Naval Res. Logist. Quart. 1 (1954), 61–68.Google Scholar
  104. [A2]
    Smith, W.E.: ‘Various optimizers for single-stage production’, Naval Res. Logist. Quart. 23 (481–486).Google Scholar
  105. [A3]
    Dantzig, G.B., Fulkerson, D.R. and Johnson, S.M.: ‘Solution of a large-scale traveling-salesman problem’, Oper. Res. 2 (1954), 393–410.MathSciNetGoogle Scholar
  106. [A4]
    Cook, S.A.: ‘The complexity of theorem-proving procedures’, Proc. 3rd Annual ACM Symp. Theory of Computing 3 (1971), 151–158.Google Scholar
  107. [A5]
    Karp, R.M.: ‘Reducibility among combinatorial problems’, in R.E. Miller and J.W. Tatcher (eds.): Complexity of Computer Computations, Plenum, 85–103.Google Scholar
  108. [A6]
    Levin, L.A.: ‘Universal sequential search problems’, Problems Inform. Transmission 9 (1975), 265–266.Google Scholar
  109. [A6a]
    Levin, L.A.: ‘Universal sequential search problems’, (Probl. Peredach. Inform. 9 (1973), 115–116)zbMATHGoogle Scholar
  110. [A7]
    Garey, M.R. andJohnson, D.S.: Computers and intractibility: A guide to the theory of NP-completeness, Freeman, 1979.zbMATHGoogle Scholar
  111. [A8]
    French, S.: Sequencing and scheduling. An introduction to the mathematics of the job-shop, Horwood, 1982.zbMATHGoogle Scholar
  112. [A9]
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B.: Sequencing and scheduling: algorithms and complexity, Report NFI, 11.89/03, Univ. Technology Eindhoven, 1989.Google Scholar
  113. [A10]
    Anthonisse, I.M., Hee, K.M. vanand Lenstra, J.K.: ‘Resource-constrained project scheduling: an international excercise in DSS development’, Decision Support Systems 3 (1988), 249–257.Google Scholar
  114. [A11]
    Belen’kiǐ, A.S. and Levner, E.V.: ‘Scheduling models and methods in optimal freight transportation planning’, Automation and Remote Control 1 (1989), 1–56.Google Scholar
  115. [A12]
    Pindo, M.L. and Schrage, L.: ‘Stochastic shop scheduling: a survey’, in M.A.H. Dempster, J.K. Lenstra and A.H.G. Rinnooy Kan (eds.): Deterministic and Stochastic Scheduling, Reidel, 1982, pp. 181–196.Google Scholar
  116. [A13]
    Möhring, R.H., Radermacher, F.J. and Weiss, G.: ‘Stochastic scheduling problems I. General strategies’, Z. Oper. Res. 28 (1984), 193–260.zbMATHGoogle Scholar
  117. [A14]
    Lawler, E.L.: ‘Sequencing jobs to minimize total weighted completion time subject to precedence constraints’, Ann. Discr. Math. 2 (1978), 75–90.MathSciNetzbMATHGoogle Scholar
  118. [A15]
    Lenstra, J.K., Rinnooy Kan, A.H.G. and Brucker. P.: ‘Complexity of machine scheduling problems’, Ann. Discrete Math. 1 (1977), 343–362.MathSciNetGoogle Scholar
  119. [A16]
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (eds.): The traveling salesman problem: a guided tour of combinatorial optimization, Wiley, 1985.zbMATHGoogle Scholar
  120. [A17]
    Schrijver, A.: Theory of linear and integer programming, Wiley, 1986.zbMATHGoogle Scholar
  121. [A18]
    Nemhauser, G.L. and Wolsey, L.A.: Integer and combinatorial optimization, Wiley, 1988.zbMATHGoogle Scholar
  122. [1]
    Grothendieck, A. and Dieudonné, J.: Eléments de géometrie algébrique, 1, Springer, 1971.zbMATHGoogle Scholar
  123. [2]
    Dieudonné, J.: Cours de géométrie algébrique, I, Presses Univ. France, 1974.Google Scholar
  124. [3]
    Shafarevich, I.R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).zbMATHGoogle Scholar
  125. [4]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.zbMATHGoogle Scholar
  126. [5]
    Dolgachev, I.V.: ‘Abstract algebraic geometry’, J. Soviet Math. 2, no. 3 (1974), 264–303. (Itogi Nauk. i Tekhn. Algebra Topol Geom. 10 (1972), 47–112)Google Scholar
  127. [1]
    Tuzhilin, A.A. and Fomenko, A.T.: Elements of the geometry and topology of minimal surfaces, Moscow, 1991 (in Russian).Google Scholar
  128. [A1]
    Struik, D.J.: Differential geometry, Addison-Wesley, 1957.Google Scholar
  129. [A2]
    Nitsche, J.C.C.: Vorlesungen über Minimalflächen, Springer, 1975.zbMATHGoogle Scholar
  130. [1]
    Schläfli, L.: ‘Eine Bemerkung zu Herrn Neumanns Untersuchungen über die Besselschen Funktionen’, Math. Ann. 3, no. 1 (1871), 134–149.Google Scholar
  131. [2]
    Schläfli, L.: Über die zwei Heine’schen Kugelfunktionen mit beliebigem Parameter und ihre ausnahmslose Darstellung durch bestimmte Integrale, H. Koerber, Berlin, 1881.Google Scholar
  132. [3]
    Whittaker, E.T. and Watson, G.N.: A course of modern analysis, Cambridge Univ. Press, 1952.Google Scholar
  133. [4]
    Krazer, A. and Franz, W.: Transzendente Funktionen, Akademie-Verlag, 1960.Google Scholar
  134. [A1]
    Olver, F.W.J.: Asymptotics and special functions, Acad. Press, 1974.Google Scholar
  135. [A2]
    Szegö, G.: Orthogonal polynomials, Amer. Math. Soc, 1975.zbMATHGoogle Scholar
  136. [A3]
    Watson, G.N.: A treatise on the theory of Bessel functions, Cambridge Univ. Press, 1952.Google Scholar
  137. [1]
    Kuratowski, K.: Topology, 2. Acad. Press. 1968.Google Scholar
  138. [A1]
    Beauville, A.: ‘Le problème de Schottky et la conjecture de Novikov’, Astérisque 152–153 (1988), 101–112. Sém Bourbaki, Exp. 675.Google Scholar
  139. [A2]
    Donagi, R.: ‘The Schottky problem’, in E. Sernesi (ed.): Theory of Moduli, Lecture notes in math., Vol. 1337, Springer, 1988, pp. 84–137.Google Scholar
  140. [A3]
    van der Geer, G.: ‘The Schottky problem’, in Arbeitstagung 1984, Lecture notes in math., Vol. 1111, Springer, 1985, pp. 385–406.Google Scholar
  141. [A4]
    Mumford, D.: Curves and their Jacobians, Univ. of Michigan Press, 1975.zbMATHGoogle Scholar
  142. [1]
    Schottky, F.: ‘Ueber den Picard’schen Satz und die Borel’schen Ungleichungen’, Sitzungsber. Preuss. Akad. Wiss. 2 (1904), 1244–1262.Google Scholar
  143. [2]
    Goluzin, G.M.: Geometric theory of functions of a complex variable, Amer. Math. Soc., 1969 (translated from the Russian).zbMATHGoogle Scholar
  144. [3]
    Stoǐlov, S.: The theory of functions of a complex variable, 1–2, Moscow, 1962 (in Russian; translated from the Rumanian).Google Scholar
  145. [A1]
    Landau, E.: Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Chelsea, reprint, 1946.Google Scholar
  146. [A2]
    Conway, J.B.: Functions of one complex variable, Springer, 1978.Google Scholar
  147. [1]
    Massey, W.: Algebraic topology. An introduction, Springer, 1977Google Scholar
  148. [A1]
    Magnus, W., Karrass, A. and Solitar, D.: Combinatorial group theory, Interscience, 1966, p. 93.zbMATHGoogle Scholar
  149. [1]
    Messiah, A.: Quantum mechanics, 1, North-Holland, 1961.Google Scholar
  150. [2]
    Landau, L. D. and Lifshitz, E. M.: Quantum mechanics, Pergamon, 1965 (translated from the Russian).zbMATHGoogle Scholar
  151. [3]
    Schiff, L.I.: Quantum mechanics, McGraw-Hill, 1955.zbMATHGoogle Scholar
  152. [A1]
    Feynman, R.P., Leighton, R.B. and Sands, M.: The Feynman lectures on physics, III, Addison-Wesley, 1965.zbMATHGoogle Scholar
  153. [A2]
    Gasiorowicz, S.: Quantum physics, Wiley, 1974.Google Scholar
  154. [A3]
    Lévy-Lehlond, J.M. and Balibar, F.: Quantics, rudiments of quantum physics, North-Holland, 1990.Google Scholar
  155. [A4]
    Berezin, F.A. and Shubin, M.A.: The Schrödinger equations, Kluwer, 1991 (translated from the Russian).Google Scholar
  156. [1]
    Schubert, H.: ‘Lösung des Charakteristiken-Problems für lineare Räume beliebiger Dimension’, Mitt. Math. Gesellschaft Hamburg 1 (1889), 134–155.Google Scholar
  157. [2]
    Kleiman, S.L.: ‘Problem 15. Rigorous foundation of Schubert’s enumerative calculus’, in F.E. Browder (ed.): Mathematical Development Arising from Hilbert Problems, Proc. Symp. Pure Math., Vol. 28, Amer. Math. Soc., 1976, pp. 445–482.Google Scholar
  158. [3]
    Griffiths, P. and Harris, J.: Principles of algebraic geometry, 1, Wiley, 1978.zbMATHGoogle Scholar
  159. [4]
    Hodge, W.V.D. and Pedoe, D.: Methods of algebraic geometry, 2, Cambridge Univ. Press, 1954.zbMATHGoogle Scholar
  160. [A1]
    Borel, A.: Linear algebraic groups, Benjamin, 1969.zbMATHGoogle Scholar
  161. [A2]
    Demazure, M.: ‘Désingularisation des variétés de Schubert généralisés’, Ann. Sci. Ecole Norm. Sup. 7 (1974), 53–87.MathSciNetzbMATHGoogle Scholar
  162. [A3]
    Laksnibai, V. and Seshadri, C.: ‘Geometry of G/P — V’, J. of Algebra 100 (1986), 462–557.Google Scholar
  163. [A1]
    Brauer, R.: ‘On the representation of a group of order g in the field of g-th roots of unity’, Amer. J. Math. 67 (1945), 461–471.MathSciNetzbMATHGoogle Scholar
  164. [A2]
    Curtis, C.W. and Reiner, I.: Representation theory of finite groups and associative algebras, Interscience, 1962, §90, §41.zbMATHGoogle Scholar
  165. [A3]
    Huppert, B. and Blackburn, N.: Finite groups, 2, Springer, 1982, §1.Google Scholar
  166. [A4]
    Yamada, T.: The Schur subgroup of the Brauer group, Springer, 1974.zbMATHGoogle Scholar
  167. [1]
    Schur, I.: ‘Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen’, Sitzungsber. Akad. Wiss. Berlin (1906), 164–184.Google Scholar
  168. [2]
    Kirillov, A.A.: Elements of the theory of representations, Springer. 1976 (translated from the Russian).zbMATHGoogle Scholar
  169. [3]
    Naǐmark, M.A.: Normed rings, Reidel, 1984 (translated from the Russian).Google Scholar
  170. [4]
    Naǐmark, M. A. and Shtern, A.I.: Theory of group representations, Springer, 1982 (translated from the Russian).Google Scholar
  171. [5]
    Zhelobenko, D.P.: Compact Lie groups and their representations, Amer. Math. Soc, 1973 (translated from the Russian).zbMATHGoogle Scholar
  172. [6]
    Lomonosov, V.I.: ‘Invariant subspaces for the family of operators which commute with a completely continuous operator’, Functional Anal. Appl. 7, no. 3 (1973), 213–214.MathSciNetGoogle Scholar
  173. [6a]
    Lomonosov, V.I.: ‘Invariant subspaces for the family of operators which commute with a completely continuous operator’, Funktsional. Anal. i Prilozhen. 7, no. 3 (1973), 55–56).MathSciNetGoogle Scholar
  174. [A1]
    Curtis, C.W. and Reiner, I.: Representation theory of finite groups and associative algebras, Interscience, 1962.zbMATHGoogle Scholar
  175. [A2]
    Serre, J.-P.: Linear representations of finite groups, Springer, 1982.Google Scholar
  176. [A3]
    Rickart, C.E.: General theory of Banach algebras, v. Nostrand, 1960.zbMATHGoogle Scholar
  177. [A4]
    Huppert, B.: Endliche Gruppen, I, Springer, 1967.zbMATHGoogle Scholar
  178. [A5]
    Bourbaki, N.: Algèbre, Eléments de mathématique, Hermann, 1958, Chapt. 8. Modules et anneaux semi-simples.Google Scholar
  179. [1]
    Schur, I.: ‘Ueber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen’, J. Reine Angew. Math. 127 (1904), 20–50.zbMATHGoogle Scholar
  180. [2]
    MacLane, S.: Homology, Springer, 1975.Google Scholar
  181. [A1]
    Gruenberg, G.: Cohomological topics in group theory, Lecture notes in math., 143, Springer, 1970.zbMATHGoogle Scholar
  182. [A2]
    Curtis, C. and Reiner, I.: Methods of representation theory, I, Wiley (Interscience), 1981.zbMATHGoogle Scholar
  183. [A1]
    Schur, I.: ‘Zur Theorie der einfach transitiven Permutationsgruppen’, Sitzungsber. Preuss. Akad. Wissenschaft. Berlin. Phys.-Math. Kl. (1933), 598–623.Google Scholar
  184. [A2]
    Wielandt, H.: ‘Zur Theorie der einfach transitiven Permutationsgruppen II’, Math.Z. 52 (1949), 384–393.MathSciNetzbMATHGoogle Scholar
  185. [A3]
    Tamaschke, O.: Schur-Ringe, B.I. Mannheim, 1970.zbMATHGoogle Scholar
  186. [A4]
    Scott, W.: Group theory, Prentice-Hall, 1964.zbMATHGoogle Scholar
  187. [A5]
    Wielandt, H.: Finite permutation groups, Acad. Press, 1964.zbMATHGoogle Scholar
  188. [A6]
    Bannai, E. and Ito, T.: Algebraic combinatorics I: Association schemes, Benjamin/Cummings, 1984.zbMATHGoogle Scholar
  189. [A7]
    Ma, S.L.: ‘On association schemes, Schur rings, strongly regular graphs and partial difference sets’, Ars Comb. 27 (1989), 211–220.zbMATHGoogle Scholar
  190. [1]
    Schur, I.: ‘Ueber Potentzreihen, die im Innern des Einheitkreises berchränkt sind’, J. Reine Angew. Math. 147 (1917), 205–232.Google Scholar
  191. [2]
    Bieberbach, L.: Lehrbuch der Funktionentheorie, 2, Teubner, 1931.Google Scholar
  192. [3]
    Goluzin, G.M.: Geometric theory of functions of a complex variable, Amer. Math. Soc, 1969 (translated from the Russian).zbMATHGoogle Scholar
  193. [A1]
    Duren, P.L.: Univalent functions, Springer, 1983.Google Scholar
  194. [A2]
    Garnett, J.B.: Bounded analytic functions, Acad. Press, 1981, p. 40.zbMATHGoogle Scholar
  195. [1]
    Schwarz, H.A.: Gesamm. math. Abhandl, 2, Springer, 1890.Google Scholar
  196. [2]
    Neumann, C.: Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Nat. Kl. 22 (1870), 264–321.Google Scholar
  197. [3]
    Kantorovich, L.V. and Krylov, V.I.: Approximate methods of higher analysis, Noordhoff, 1958 (translated from the Russian).zbMATHGoogle Scholar
  198. [4]
    Nevanlinna, R.: Uniformisierung, Springer, 1967.zbMATHGoogle Scholar
  199. [A1]
    Helms, L.L.: Introduction to potential theory, Wiley-Interscience, 1969.zbMATHGoogle Scholar
  200. [A2]
    Chan, T.F., et al.: Domain decomposition methods for partial differential equations, SIAM, 1990.Google Scholar
  201. [1]
    Schwarz, H.A.: ‘Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elements darstellt (nebst zwei Figurtafeln)’, J. Reine Angew. Math 75 (1873), 292–335.Google Scholar
  202. [2]
    Golubev, V.V.: Vorlesungen über Differentialgleichungen im Komplexen, Deutsch. Verlag Wissenschaft., 1958 (translated from the Russian).Google Scholar
  203. [A1]
    Hille, E.: Lectures on ordinary differential equations, Addison-Wesley, 1969.zbMATHGoogle Scholar
  204. [A2]
    Nehari, Z.: Conformal mapping, Dover, reprint, 1975, Chapt. 7, §7.Google Scholar
  205. [1]
    Schwarz, H.A.: ‘Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt (nebst zwei Figurtafeln)’. J. Reine Angew. Math. 75 (1873). 292–335.Google Scholar
  206. [2]
    Golubev, V.V.: Vorlesungen über Differentialgleichungen im Komplexen. Deutsch. Verlag Wissenschaft. 1958 (translated from the Russian).Google Scholar
  207. [3]
    Ford, L.R.: Automorphic functions, Chelsea, reprint. 1951.Google Scholar
  208. [A1]
    Ahlfors, L.V.: Complex analysis, McGraw-Hill, 1979, p. 241.zbMATHGoogle Scholar
  209. [A2]
    Carathéodory, C.: Theory of functions, Chelsea, reprint, 1981, Part 7, Chapts. 2–3.Google Scholar
  210. [A3]
    Nehari, Z.: Conformai mapping, Dover, reprint, 1975.Google Scholar
  211. [1]
    Schwarz, H.A.: Ges. Math. Abh., 2, Berlin, 1890.Google Scholar
  212. [2]
    Bitsadze, A.V.: Foundations of the theory of analytic functions of a complex variable, Moscow, 1972 (in Russian).Google Scholar
  213. [3]
    Gakhov, F.D.: Boundary value problems, Pergamon, 1966 (translated from the Russian).zbMATHGoogle Scholar
  214. [4]
    Priwalow, I.I. [I.I. Privalov]: Randeigenschaften analytischer Funktionen, Deutsch. Verlag Wissenschaft., 1956 (translated from the Russian).zbMATHGoogle Scholar
  215. [1]
    Zabrejko, P.P. [P.P. Zabreǐko], et al.: Integral equations, Noordhoff, 1975 (translated from the Russian).zbMATHGoogle Scholar
  216. [2]
    Mikhlin, S.G.: Linear integral equations, Hindushtan Publ. Comp., Delhi, 1960 (translated from the Russian).Google Scholar
  217. [1]
    Schwarz, H.A.: Gesamm. math. Abhandl. 1–2, Springer, 1890.Google Scholar
  218. [2]
    Goluzin, G.M.: Geometric theory of functions of a complex variable, Amer. Math. Soc, 1969 (translated from the Russian).zbMATHGoogle Scholar
  219. [3]
    Nevanlinna, R.: Analytic functions, Springer, 1970 (translated from the German).zbMATHGoogle Scholar
  220. [4]
    Shabat, B.V.: Introduction fo complex analysis, 2, Moscow, 1976 (in Russian).Google Scholar
  221. [A1]
    Dineen, S.: The Schwarz lemma, Oxford Univ. Press, 1989.zbMATHGoogle Scholar
  222. [A2]
    Carathéodory, C.: ‘Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten’, Math. Ann. 72 (1912), 107–144.MathSciNetGoogle Scholar
  223. [A3]
    Burchel, R.B.: An introduction to classical complex analysis, 1, Birkhäuser, 1979.Google Scholar
  224. [A4]
    Markushevich, A.I.: Theory of functions of a complex variable, I, Chelsea, 1977, p. 381, Thm. 17.8 (translated from the Russian).zbMATHGoogle Scholar
  225. [A5]
    Ahlfors, L.V.: Conformal invariants: topics in geometric function theory, McGraw-Hill, 1973.Google Scholar
  226. [A6]
    Garnett, J.: Bounded analytic functions, Acad. Press, 1981.zbMATHGoogle Scholar
  227. [A7]
    Rudin, W.: Function theory in the unit ball of Cn, Springer, 1980.Google Scholar
  228. [1]
    Fichtenholz, G.M.: Differential und Integralrechnung, 3, Deutsch. Verlag Wissenschaft., 1964.zbMATHGoogle Scholar
  229. [A1]
    Berger, M.: Geometry, I, Springer, 1987, p. 263 (translated from the French).Google Scholar
  230. [A2]
    Berger, M. and Gostiaux, B.: Differential geometry, Springer, 1988, p. 208 (translated from the French).zbMATHGoogle Scholar
  231. [1]
    Schwarz, H.A.: ‘Beweis eines für die Theorie der trigonometrischen Reihen in Betracht kommenden Hülfssatzes’, in Gesammelte Math. Abh., Chelsea, reprint, 1972, pp. 341–343.Google Scholar
  232. [2]
    Riemann, B.: ‘Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe’, in H. Weber (ed.): Gesammelte Math. Werke, Dover, reprint, 1953, pp. 227–271.Google Scholar
  233. [3]
    Natanson, I.P.: Theory of functions of a real variable, 1–2, F. Ungar, 1955–1961 (translated from the Russian).Google Scholar
  234. [4]
    Bary, N.K. [N.K. Bari]: A treatise on trigonometric series, Pergamon, 1964 (translated from the Russian).zbMATHGoogle Scholar
  235. [5]
    Zygmund, A.: Trigonometric series, 1–2, Cambridge Univ. Press, 1988.zbMATHGoogle Scholar
  236. [A1]
    Rudin, W.: Real and complex analysis, McGraw-Hill, 1974.zbMATHGoogle Scholar
  237. [1]
    Schwarz, H.A.: Gesamm. math. Abhandl, 2, Springer, 1890.Google Scholar
  238. [2]
    Nevanlinna, R.: Analytic functions, Springer, 1970 (translated from the German).zbMATHGoogle Scholar
  239. [3]
    Goluzin, G.M.: Geometric theory of functions of a complex variable, Amer. Math. Soc, 1969 (translated from the Russian).zbMATHGoogle Scholar
  240. [A1]
    Kraus, W.: ‘Ueber den Zusammenhang einiger Charakteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung’, Mitt. Math. Sem. Giessen 21 (1932), 1–28.zbMATHGoogle Scholar
  241. [A2]
    Nehari, Z.: ‘The Schwarzian derivative and schlicht functions’, Bull. Amer. Math. Soc. 55 (1949), 545–551.MathSciNetzbMATHGoogle Scholar
  242. [A3]
    Duren, P.L.: Univalent functions, Springer, 1983, p. 258.zbMATHGoogle Scholar
  243. [A4]
    Lehto, O.: Univalent functions and Teichmüller spaces, Springer, 1987.zbMATHGoogle Scholar
  244. [A5]
    Nehari, Z.: Conformal mapping, Dover, reprint, 1975.Google Scholar
  245. [A1]
    Weyl, H.: Raum, Zeit, Materie, Springer, 1923.Google Scholar
  246. [A2]
    Zel’dovich, Ya.B. and Novikov, I.D.: Relativistic astrophysics, 1. Stars and relativity, Chicago, 1971 (translated from the Russian).Google Scholar
  247. [A3]
    Rindler, W.: Essential relativity, Springer, 1977, pp. 136–164.zbMATHGoogle Scholar
  248. [A4]
    Weinberg, S.: Gravitation and cosmology, Wiley, 1972.Google Scholar
  249. [A5]
    O’Neill, B.: Semi-Riemannian geometry, Acad. Press, 1983.zbMATHGoogle Scholar
  250. [A6]
    Hawking, S.W. and Ellis, G.F.R.: The large scale structure of space-time, Cambridge Univ. Press, 1973.zbMATHGoogle Scholar
  251. [A7]
    Chandrasekhar, S.: The mathematical theory of black holes, Oxford Univ. Press, 1983.zbMATHGoogle Scholar
  252. [A8]
    Novikov, I.D. and Frolov, V.P.: Physics of black holes, Kluwer, 1989 (translated from the Russian).zbMATHGoogle Scholar
  253. [A1]
    Bellman, R.: ‘Research problem No. 63–9’, SIAM Review 5 (1963), 274.Google Scholar
  254. [A2]
    Franck, W.: ‘An optimal search problem’, SIAM Review 7 (1965), 503–512.MathSciNetzbMATHGoogle Scholar
  255. [A3]
    Beck, A.: ‘On the linear search problem’, Israel J. Math. 2 (1964), 221–228.MathSciNetzbMATHGoogle Scholar
  256. [A4]
    Rousseeuw, P.J.: ‘Optimal search paths for random variables’, J. Comput. Appl. Math. 9 (1983), 279–286.MathSciNetzbMATHGoogle Scholar
  257. [A5]
    Bruss, F.T. and Robertson, J.B.: ‘A survey of the linear search problem’, Math. Scientist 13 (1988), 75–89.MathSciNetzbMATHGoogle Scholar
  258. [A1]
    Knopp, K.: Theorie und Anwendung der unendlichen Reihen, Springer, 1964. (English (incomplete) translation: Dover, reprint, 1990).zbMATHGoogle Scholar
  259. [A2]
    Abramowitz, M. and Stegun, I.A.: Handbook of mathematical functions, Dover, reprint, 1965, §4.3.Google Scholar
  260. [1]
    Brent, R.P.: Algorithms for minimization without derivatives, Prentice-Hall, 1973.zbMATHGoogle Scholar
  261. [2]
    Forsythe, G.E., Malcolm, M.A. and Moler, C.B.: Computer methods for mathematical computations, Prentice-Hall, 1977.zbMATHGoogle Scholar
  262. [3]
    Ortega, J.M. and Rheinboldt, W.C.: Iterative solution of non-linear equations in several variables, Acad. Press, 1970.Google Scholar
  263. [A1]
    Hildebrand, F.B.: Introduction to numerical analysis, Dover, reprint, 1987, Chapt. 10.zbMATHGoogle Scholar
  264. [A2]
    Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T.: Numerical recipes, Cambridge Univ. Press, 1986, §9.2.Google Scholar
  265. [A1]
    Mill, J. van: Infinite-dimensional topology, North-Holland, 1989, p. 40.zbMATHGoogle Scholar
  266. [A2]
    Arkhangel’skiǐ, A.V. and Ponomarev, V.I.: Fundamentals of general topology: problems and exercises, Reidel, 1984, p. 43, 124 (translated from the Russian).Google Scholar
  267. [1]
    Bitsadze, A.V.: Boundary value problems for second-order elliptic equations, North-Holland, 1968 (translated from the Russian).zbMATHGoogle Scholar
  268. [2]
    Vladimirov, V.S.: Equations of mathematical physics, Mir, 1984 (translated from the Russian).Google Scholar
  269. [3]
    Miranda, C.: Partial differential equations of elliptic type, Springer, 1970 (translated from the Italian).zbMATHGoogle Scholar
  270. [4]
    Petrovskiǐ, I.G.: Partial differential equations, Saunders, 1967 (translated from the Russian).Google Scholar
  271. [A1]
    Garabedian, P.R.: Partial differential equations, Wiley, 1963.Google Scholar
  272. [A2]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  273. [A1]
    Dulst, D. van: Reflexive and superreflexive spaces, Math. Centre, Amsterdam, 1978.zbMATHGoogle Scholar
  274. [A2]
    Köthe, G.: Topological vector spaces, I, Springer, 1969, §23.5.zbMATHGoogle Scholar
  275. [A1]
    Blaschke, W. and Leichtweiss, K.: Elementare Differentialgeometrie, Springer, 1973.zbMATHGoogle Scholar
  276. [1]
    Aleksandrov, P.S.: Lectures on analytic geometry, Moscow, 1968 (in Russian).Google Scholar
  277. [2]
    Efimov, N.V.: A short course of analytic geometry, Moscow, 1967 (in Russian).Google Scholar
  278. [A1]
    Berger, M.: Geometry, II, Springer, 1989 (translated from the French).Google Scholar
  279. [A2]
    Busemann, H. and Kelly, P.: Projective geometry and projective metrics, Acad. Press, 1953.zbMATHGoogle Scholar
  280. [A3]
    Coolidge, J.: A history of the conic sections and quadric surfaces, Dover, reprint, 1968.Google Scholar
  281. [A4]
    Coxeter, H.: Introduction to geometry, Wiley, 1963.Google Scholar
  282. [A5]
    Griffiths, P. and Harris, S.: Principles of algebraic geometry, Wiley, 1978.zbMATHGoogle Scholar
  283. [A6]
    Hilbert, D. and Cohn-Vossen, S.: Geometry and the imagination, Chelsea, reprint, 1952 (translated from the German).Google Scholar
  284. [1]
    Morse, M.: The calculus of variations in the large. Amer. Math. Soc., 1934.zbMATHGoogle Scholar
  285. [2]
    Milnor, J.: Morse theory, Princeton Univ. Press, 1963.zbMATHGoogle Scholar
  286. [A1]
    Spanier, E.H.: Algebraic topology, McGraw-Hill, 1966, p. 77.zbMATHGoogle Scholar
  287. [A1]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).zbMATHGoogle Scholar
  288. [1]
    Bendixson, I.: ‘Sur des courbes définiés par des équations différentielles’, Acta Math. 24 (1901), 1–88.MathSciNetGoogle Scholar
  289. [2]
    Andronov, A.A., Leontovich, E.A., Gordon, I.I. and Maier, A.G.: Qualitative theory of second-order dynamic systems, Wiley, 1973 (translated from the Russian).zbMATHGoogle Scholar
  290. [3]
    Hartman, P.: Ordinary differential equations, Birkhäuser, 1982.zbMATHGoogle Scholar
  291. [4]
    Berlinskiǐ, A.N.: ‘On the structure of the neighborhood of a singular point of a two-dimensional autonomous system’, Soviet Math. Dokl. 10, no. 4 (1969), 882–885.Google Scholar
  292. [4a]
    Berlinskiǐ, A.N.: ‘On the structure of the neighborhood of a singular point of a two-dimensional autonomous system’, Dokl. Akad. Nauk SSSR 187, no. 3 (1969), 502–505)MathSciNetGoogle Scholar
  293. [5]
    Sagalovich, M.E.: ‘Classes of local topological structures of an equilibrium state’, Diff. Equations 15, no. 2 (1979), 253–255.zbMATHGoogle Scholar
  294. [5a]
    Sagalovich, M.E.: ‘Classes of local topological structures of an equilibrium state’, Differentsial’nye Urnveniya 15, no. 2 (1979), 360–362)MathSciNetzbMATHGoogle Scholar
  295. [1]
    Frommer, M.: ‘Die Integralkurven einer gewöhnlichen Differentialgleichung erster Ordnung in der Umgebung rationaler Unbestimtheitsstellen’, Math. Ann. 99 (1928), 222–272.MathSciNetzbMATHGoogle Scholar
  296. [2]
    Nemytskiǐ, V.V. and Stepanov, V.V.: Qualitative theory of differential equations, Princeton Univ. Press, 1960 (translated from the Russian).Google Scholar
  297. [3]
    Andreev, A.F.: ‘A uniqueness theorem for a normal region of Frommer’s second type’, Soviet Math. Dokl. 3, no. 1 (1962), 132–135.zbMATHGoogle Scholar
  298. [3a]
    Andreev, A.F.: ‘A uniqueness theorem for a normal region of Frommer’s second type’, Dokl. Akad. Nauk SSSR 142, no. 4 (1962), 754–757)MathSciNetGoogle Scholar
  299. [4]
    Andreev, A.F.: ‘Strengthening of the uniqueness theorem for an O-curve in N 2’, Soviet Math. Dokl. 3, no. 5 (1962), 1215–1216.Google Scholar
  300. [4a]
    Andreev, A.F.: ‘Strengthening of the uniqueness theorem for an O-curve in N 2’, Dokl. Akad. Nauk SSSR 146, no. 1 (1962), 9–10)MathSciNetGoogle Scholar
  301. [A1]
    Coxeter, H.S.M.: Introduction to geometry, Wiley, 1989.Google Scholar
  302. [A2]
    Lamb, H.: Infinitesimal calculus, Cambridge, 1924.zbMATHGoogle Scholar
  303. [1]
    Shafarevich, I.R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).zbMATHGoogle Scholar
  304. [A1]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.zbMATHGoogle Scholar
  305. [1]
    Seidel, L.: Abh. Bayer. Akad. Wiss. Math.-Naturwiss. Kl. 11, no. 3 (1874), 81–108.Google Scholar
  306. [2]
    Bakhvalov, N.S.: Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).Google Scholar
  307. [3]
    Berezin, I.S. and Zhidkov, N.P.: Computing methods, Pergamon, 1973 (translated from the Russian).Google Scholar
  308. [4]
    Faddeev, D.K. and Faddeeva, V.N.: Computational methods of linear algebra, Freeman, 1963 (translated from the Russian).Google Scholar
  309. [A1]
    Fröberg, C.-E.: Introduction to numerical analysis, Addison-Wesley, 1965, §4.5.zbMATHGoogle Scholar
  310. [A2]
    Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T.: Numerical recipes, Cambridge Univ. Press, 1986, §17.5.Google Scholar
  311. [A3]
    Young, D.M. and Gregory, R.T.: A survey of numerical mathematics, II, Dover, reprint, 1988, §16.5.Google Scholar
  312. [A4]
    Hildebrand, F.B.: Introduction to numerical analysis, Dover, reprint, 1987, §10.5.zbMATHGoogle Scholar
  313. [1]
    Seifert, H.: ‘Topologie driedimensionaler gefaserter Räume’, Acta Math. 60 (1933), 147–238.MathSciNetGoogle Scholar
  314. [2]
    Holmann, H.: ‘Seifertsche Faserräume’, Math. Ann. 157 (1964), 138–166.MathSciNetzbMATHGoogle Scholar
  315. [3]
    Orlik, P.: Seifert Manifolds, Springer, 1972.zbMATHGoogle Scholar
  316. [4]
    Hempel, J.: 3-Manifolds, Princeton Univ. Press, 1976.zbMATHGoogle Scholar
  317. [A1]
    Jaco, W.H.: Lectures on three manifold topology, Amer. Math. Soc., 1980, Chapt. VI.Google Scholar
  318. [1]
    Seifert, H.: ‘Ueber das Geschlecht von Knoten’, Math. Ann. 110 (1934), 571–592.MathSciNetGoogle Scholar
  319. [2]
    Crowell, R.H. and Fox, R.H.: Introduction to knot theory, Ginn, 1963.zbMATHGoogle Scholar
  320. [3]
    Levine, J.: ‘Polynomial invariants of knots of codimension two’, Ann. of Math. 84 (1966), 537–554.MathSciNetzbMATHGoogle Scholar
  321. [4]
    Levine, J.: ‘An algebraic classification of some knots of codimension two’, Comment. Math. Helv. 45 (1970), 185–198.MathSciNetzbMATHGoogle Scholar
  322. [1]
    Selberg, A.: ‘On an elementary method in the theory of primes’, Norsk. Vid. Selsk. Forh. 19, no. 18 (1947), 64–67.MathSciNetzbMATHGoogle Scholar
  323. [2]
    Prachar, K.: Primzahlverteilung, Springer, 1957.zbMATHGoogle Scholar
  324. [3]
    Halberstam, H. and Richert, H.: Sieve methods, Acad. Press, 1974.zbMATHGoogle Scholar
  325. [1]
    Hall, M.: Combinatorial theory, Blaisdell, 1967.Google Scholar
  326. [2]
    Rijser, H.J.: Combinatorial mathematics, Cams Math. Monogr., 14, Math. Assoc. Amer., 1963.Google Scholar
  327. [3]
    Hall, Ph.: ‘On representatives of subsets’, J. London Math. Soc. 1 (1935), 26–30.Google Scholar
  328. [4]
    König, D.: Theorie der endlichen und unendlichen Graphen, Chelsea, reprint, 1950.Google Scholar
  329. [5]
    Ramsey, F.P.: ‘On a problem of formal logic’, Proc. London Math. Soc. (2) 30 (1930), 264–286.MathSciNetGoogle Scholar
  330. [6]
    Erdös, P. and Szekeres, G.: ‘A combinatorial problem in geometry’, Compositio Math. 2 (1935), 463–470.MathSciNetGoogle Scholar
  331. [A1]
    Kuratowski, K. and Ryll-Nardzweski, C.: ‘A general theorem on selectors’, Bull. Acad. Pol. Sci., Ser. Math. Astron. Phys. 13 (1965), 397–403.zbMATHGoogle Scholar
  332. [A2]
    Neumann, J. von: ‘On rings of operators. Reduction theory’, Ann. of Math. 50 (1949), 448–451.Google Scholar
  333. [A3]
    Michael, E.: ‘Continuous selections I’, Ann. of Math. 63 (1956), 361–382.MathSciNetzbMATHGoogle Scholar
  334. [A4]
    Parthasarathy, T.: Selection theorems and their applications, Lecture notes in math., 263, Springer, 1972.Google Scholar
  335. [A5]
    Fleischman, W.M. (ed.): Set valued mappings, selections and topological properties of 2X, Lecture notes in math., 171, Springer, 1970.Google Scholar
  336. [A6]
    Mirsky, L.: Transversal theory, Acad. Press, 1971.zbMATHGoogle Scholar
  337. [A7]
    Lüneburg, H.: Tools and fundamental constructions of combinatorial mathematics, B.I. Wissenschaftsverlag, 1989.zbMATHGoogle Scholar
  338. [A8]
    Graham, R.L., Rothschild, B.L. and Spencer, J.H.: Ramsey theory, Wiley (Interscience), 1980.zbMATHGoogle Scholar
  339. [1]
    Kamke, E.: Differentialgleichungen: Lösungsmethoden und Lösungen, 1, Chelsea, reprint, 1971.Google Scholar
  340. [2]
    Naǐmark, M.A.: Linear differential operators, Harrap, 1968 (translated from the Russian).Google Scholar
  341. [3]
    Coddington, E.A. and Levinson, N.: Theory of ordinary differential equations, McGraw-Hill, 1955.zbMATHGoogle Scholar
  342. [4]
    Vladimirov, V.S.: Equations of mathematical physics, Mir, 1984 (translated from the Russian).Google Scholar
  343. [5]
    Hartman, P.: Ordinary differential equations, Birkhäuser, 1982.zbMATHGoogle Scholar
  344. [6]
    Dunford, N. and Schwartz, J.T.: Linear operators. Spectral theory, 2, Interscience, 1963.Google Scholar
  345. [7]
    Mikhaǐlov, V.P.: Partial differential equations, Mir, 1978 (translated from the Russian).Google Scholar
  346. [A1]
    Agmon, S.: Lectures on elliptic boundary value problems, v. Nostrand, 1965.zbMATHGoogle Scholar
  347. [A1]
    Halmos, P.R.: Finite-dimensional vector spaces, v. Nostrand, 1958.zbMATHGoogle Scholar
  348. [1]
    Lyusternik, L.A. and Sobolev, V.I.: Elements of functional analysis, Wiley, 1974 (translated from the Russian).Google Scholar
  349. [2]
    Akhiezer, N.I. and Glazman, I.M.: Theory of linear operators in Hilbert space, 1–2, Pitman, 1981 (translated from the Russian).zbMATHGoogle Scholar
  350. [3]
    Riesz, F. and Szökefalvi-Nagy, B.: Functional analysis, F. Ungar, 1955 (translated from the French).Google Scholar
  351. [1]
    Skornyaka, L.A. and Mikhalev, A.V.: ‘Modules’, Itogi Nauk. i Tekhn. Algebra. Topol. Geom. 14 (1976), 57–190 (in Russian).Google Scholar
  352. [2]
    Faith, C.: Algebra, 1–2, Springer, 1973–1976.zbMATHGoogle Scholar
  353. [3]
    Lawrence, J.: ‘A countable self-injective ring is quasi-Frobenius’, Proc. Amer. Math. Soc. 65, no. 2 (1977), 217–220.MathSciNetzbMATHGoogle Scholar
  354. [A1]
    McConnell, J.C. and Robson, J.C.: Noncommutative noetherian rings, Wiley, 1987, Part I, Chapt. 2.zbMATHGoogle Scholar
  355. [1]
    Reshetnyak, Yu.G.: ‘An extremal problem in the theory of surfaces’, Uspekhi Mat. Nauk 8, no. 6 (1953), 125–126 (in Russian).zbMATHGoogle Scholar
  356. [2]
    Sorokin, V.A.: ‘Minkowski geometry with asymmetric indicatrix’, Uchebn. Zap. Moskov. Gos. Ped. Inst. 243 (1965), 160–185 (in Russian).MathSciNetGoogle Scholar
  357. [3]
    Chakerian, G.D. and Talley, W.K.: ‘Some properties of the self-circumference of convex sets’, Arch. Math. 20, no. 4 (1969), 431–443.MathSciNetzbMATHGoogle Scholar
  358. [4]
    Gołab, S.: ‘Sur la longuer d’indicatrice dans la géomerie plane de Minkowski’, Colloq. Math. 15, no. 1 (1966), 141–144.MathSciNetzbMATHGoogle Scholar
  359. [5]
    Schäffer, J.J.: ‘Spheres with maximum inner diameter’, Math. Ann. 190, no. 3 (1971), 242–247.MathSciNetzbMATHGoogle Scholar
  360. [6]
    Petty, C.M.: ‘Geominimal surface area’, Geom. Dedic. 3, no. 1 (1974), 77–97.MathSciNetzbMATHGoogle Scholar
  361. [1]
    Carnap, R.: Meaning and necessity, Univ. Chicago Press, 1947.zbMATHGoogle Scholar
  362. [2]
    Church, A.: Introduction to mathematical logic, 1, Princeton Univ. Press, 1956.zbMATHGoogle Scholar
  363. [3]
    Kleene, S.C.: Introduction to metamathematics. North-Holland 1951.Google Scholar
  364. [4]
    Dragalin, A.G.: Mathematical intuitionism. Introduction to proof theory. Amer. Math. Soc, 1988 (translated from the Russian).zbMATHGoogle Scholar
  365. [5]
    Feys, R.: Modal logics, Gauthier-Villars. 1965.zbMATHGoogle Scholar
  366. [A1]
    Chang, C. and Keisler, H.: Model theory, North-Holland, 1973.zbMATHGoogle Scholar
  367. [A2]
    Jech, T.: Set theory, Acad. Press, 1978.Google Scholar
  368. [A3]
    Kunen, K.: Set theory, North-Holland, 1980.zbMATHGoogle Scholar
  369. [A4]
    Troelstra, A.S. and Dalen, D. van: Constructivity in mathematics, 1–2, North-Holland, 1988.Google Scholar
  370. [A1]
    Hironaka, H.: ‘Stratification and flatness’, in P. Holm (ed.): Real and Complex Singularities, Oslo 1976, Sijthoff & Noordhoff, 1977, pp. 199–266.Google Scholar
  371. [A2]
    Pawtucki, W.: Points de Nash des ensembles sousanalytiques, Amer. Math. Soc, 1990.Google Scholar
  372. [A3]
    Brumfiel, G.W.: Partially ordered rings and semi-algebraic geometry, Cambridge Univ. Press, 1979.zbMATHGoogle Scholar
  373. [1]
    Riesz, F. and Szökefalvi-Nagy, B.: Functional analysis, F. Ungar, 1955 (translated from the French).Google Scholar
  374. [A1]
    Faith, C.: Algebra, II. Ring theory, Springer, 1976, Chapt. 25.zbMATHGoogle Scholar
  375. [A1]
    Faith, C.: Algebra, II. Ring theory, Springer, 1976, Chapt. 25.zbMATHGoogle Scholar
  376. [1]
    Brillouin, L.: La théorie des quanta et l’atome de Bohr. Blanchard, 1922.Google Scholar
  377. [2]
    Landau, L.D. and Liishitz, E.M.: Quantum mechanics, Pergamon, 1965 (translated from the Russian).zbMATHGoogle Scholar
  378. [3]
    Maslov, V.P.: Théorie des perturbations et méthodes asymptotiques, Dunod, 1972 (translated from the Russian).zbMATHGoogle Scholar
  379. [4]
    Maslov, V.P. and Fedoryuk, M.V.: Semi-classical approximation in quantum mechanics, Reidel, 1981 (translated from the Russian).zbMATHGoogle Scholar
  380. [5]
    Fok, V.A.: Problems of diffraction and propagation of electromagnetic waves, Moscow, 1970 (in Russian).Google Scholar
  381. [6]
    Babich, V.M. and Buldyrev, V.S.: Asymptotic methods in problems of diffraction of short waves, Moscow, 1972 (in Russian).Google Scholar
  382. [7]
    Maslov, V.P.: Operational methods, Mir, 1976 (translated from theRussian).zbMATHGoogle Scholar
  383. [A1]
    Simon, B.: Functional integration and quantum mechanics, Acad. Press, 1979.Google Scholar
  384. [1]
    Natanson, I.P.: Theory of functions of a real variable, 1–2, F. Ungar, 1955–1961 (translated from the Russian).Google Scholar
  385. [2]
    Saks, S.: Theory of the integral, Hafner, 1937.Google Scholar
  386. [A1]
    Stromberg, K.: Introduction to classical real analysis, Wads-worth, 1981.zbMATHGoogle Scholar
  387. [A1]
    Engelking, R.: General topology, Heldermann, 1989.zbMATHGoogle Scholar
  388. [1]
    Hardy, G.H.: Divergent series, Clarendon, 1949.zbMATHGoogle Scholar
  389. [3]
    Beekmann, W. and Zeller, K.: Theorie der Limitierungsverfahren, Springer, 1970.zbMATHGoogle Scholar
  390. [1]
    Savelov, A.A.: Plane curves, Moscow, 1960 (in Russian).Google Scholar
  391. [2]
    Smogorzhevskiï, A.S. and Stolova, E.S.: Handbook of the theory of planar curves of the third order, Moscow, 1961 (in Russian).Google Scholar
  392. [A1]
    Lawrence, J.D.H.: A catalog of special plane curves, Dover, reprint, 1972.zbMATHGoogle Scholar
  393. [A2]
    Gomes Teixeira, F.: Traité des courbes, 1–3, Chelsea, reprint, 1971.zbMATHGoogle Scholar
  394. [1]
    Kurosh, A.G.: The theory of groups, 1–2, Chelsea, 1960 (translated from the Russian).Google Scholar
  395. [1]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  396. [A1]
    Rosenfeld, B.A. [B.A. Rozenfel’d]: A history of non-Euclidean geometry, Springer, 1988 (translated from the Russian).zbMATHGoogle Scholar
  397. [1]
    Sommerville, D.M.Y.: ‘Classification of geometries with projective metric’, Proc. Edinburgh Math. Soc. 28 (1910), 25–41.zbMATHGoogle Scholar
  398. [2]
    Kotel’nikov, A.P.: ‘The principle of relativity and Lobachevskiῐ geometry’, in In memoriam N.I. Lobachevskiῐ, Vol. 2, Kazan’, 1926 (in Russian).Google Scholar
  399. [3]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  400. [A1]
    Rosenfeld, B.A. [B.A. Rozenfel’d]: A history of non-Euclidean geometry, Springer, 1988 (translated from the Russian).zbMATHGoogle Scholar
  401. [A1]
    Klingenberg, W.: A course in differential geometry, Springer, 1983 (translated from the German).zbMATHGoogle Scholar
  402. [A2]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).zbMATHGoogle Scholar
  403. [A3]
    O’Neill, B.: Semi-Riemannian geometry (with applications to relativity), Acad. Press, 1983.zbMATHGoogle Scholar
  404. [A4]
    Kobayaski, S. and Nomizu, K.: Foundations of differential geometry, 1–2, Wiley, 1963–1969.Google Scholar
  405. [1]
    Sushkevich, A.K.: The theory of generalized groups, Khar’kov-Kiev, 1937 (in Russian).Google Scholar
  406. [2]
    Lyapin, E.S.: Semigroups, Amer. Math. Soc, 1974 (translated from the Russian).zbMATHGoogle Scholar
  407. [3]
    Clifford, A.H. and Preston, G.B.: The algebraic theory of semigroups, 1–2, Amer. Math. Soc, 1961–1967.zbMATHGoogle Scholar
  408. [4]
    The algebraic theory of automata, languages and semi-groups, Moscow, 1975 (in Russian; translated from the English).Google Scholar
  409. [5]
    Fuchs, L.: Partially ordered algebraic systems, Pergamon, 1963.zbMATHGoogle Scholar
  410. [6]
    Itogi Nauk. Algebra, Topol. 1962 (1963), 33–58.Google Scholar
  411. [7]
    Itogi Nauk. Algebra 1964 (1966), 161–202.Google Scholar
  412. [8]
    Itogi Nauk. Algebra, Topol. Geom. 1966 (1968), 9–56.Google Scholar
  413. [9]
    Folley, K.W. (ed.): Semigroups, Acad. Press, 1969.zbMATHGoogle Scholar
  414. [10]
    Howie, J.: An introduction to semigroup theory, Acad. Press, 1976.zbMATHGoogle Scholar
  415. [11]
    Petrich, M.: Introduction to semigroups, C. Merrill, 1973.zbMATHGoogle Scholar
  416. [12]
    Petrich, M.: Lectures in semigroups, Wiley, 1977.Google Scholar
  417. [13]
    Redei, L.: The theory of finitely generated commutative semigroups, Pergamon, 1965 (translated from the German).zbMATHGoogle Scholar
  418. [14]
    Hofmann, K.H. and Mostert, P.S.: Elements of compact semigroups, C. Merrill, 1966.zbMATHGoogle Scholar
  419. [15]
    Lallement, G.: Semi-groups and combinatorial applications, Wiley, 1979.Google Scholar
  420. [16]
    Eilenberg, S.: Automata, languages and machines, A-B, Acad. Press, 1974–1976.zbMATHGoogle Scholar
  421. [A1]
    Bergmund, J.F., Jungheun, H.D. and Milnes, P.: Analysis on semigroups, Wiley, 1989.Google Scholar
  422. [A2]
    Hilgert, J., Hofmann, K.H. and Lawson, J.D.: Lie groups, convex cones and semigroups, Clarendon, 1989.zbMATHGoogle Scholar
  423. [A3]
    Hofmann, K.H., Lawson, J.D. and Pym, J.S. (eds.): The analytical and topological theory of semigroups, Springer, 1990.zbMATHGoogle Scholar
  424. [A4]
    Ruppert, W.: Compact semitopological semigroups, Springer, 1984.zbMATHGoogle Scholar
  425. [1]
    Barbu, V.: Non-linear semi-groups and differential equations in Banach spaces, Ed. Academici, 1976. (Translated from the Romanian).Google Scholar
  426. [2]
    Brézis, H.: Opérateurs maximaux monotones et semigroups de contractions dans les espaces de Hilbert, North-Holland, 1973.Google Scholar
  427. [3]
    Brézis, H. and Pazy, A.: ‘Convergence and approximation of semigroups of nonlinear operators in Banach spaces’, J. Funct. Anal 9, no. 1 (1972), 63–74.zbMATHGoogle Scholar
  428. [4]
    Crandall, M.G. and Liggett, T.M.: ‘Generation of semigroups of nonlinear transformations on general Banach spaces’, Amer. J. Math. 93, no. 2 (1971), 265–298.MathSciNetzbMATHGoogle Scholar
  429. [5]
    Kobayashi, Y.: ‘Difference approximation of Gauchy problems for quasi-dissipative operators and generation of nonlinear semigroups’, J. Math. Soc. Japan 27, no. 4 (1975), 640–665.MathSciNetzbMATHGoogle Scholar
  430. [6]
    Konishi, Y.: ‘On the uniform convergence of a finite difference scheme for a nonlinear heat equation’, Proc. Japan. Acad. 48, no. 2 (1972), 62–66.MathSciNetzbMATHGoogle Scholar
  431. [7]
    Martin, R.H.: ‘Differential equations on closed subsets of a Banach space’, Trans. Amer. Math. Soc. 179 (1973), 399–414.MathSciNetzbMATHGoogle Scholar
  432. [8]
    Webb, G.F.: ‘Continuous nonlinear perturbations of linear accretive operators in Banach spaces’, J. Funct. Anal. 10, no. 2 (1972), 191–203.zbMATHGoogle Scholar
  433. [9]
    Hazan, M.I. [M.I. Khazan]: ‘Nonlinear evolution equations in locally convex spaces’, Soviet Math. Dokl. 14, no. 5 (1973), 1608–1614.zbMATHGoogle Scholar
  434. [9a]
    Hazan, M.I. [M.I. Khazan]: ‘Nonlinear evolution equations in locally convex spaces’, (Dokl. Akad. Nauk SSSR 212, no. 6 (1973), 1309–1312)MathSciNetGoogle Scholar
  435. [10]
    Hazan, M.I. [M.I. Khazan]: ‘Differentiability of nonlinear semigroups and the classical solvability of nonlinear boundary value problems for the equation Φ(u t ) = u xx,Soviet Math. Dokl. 17, no. 3 (1976), 839–843.zbMATHGoogle Scholar
  436. [10a]
    Hazan, M.I. [M.I. Khazan]: ‘Differentiability of nonlinear semigroups and the classical solvability of nonlinear boundary value problems for the equation Φ(u t ) = u xx’,(Dokl. Akad. Nauk SSSR 228, no. 4 (1976), 805–808)MathSciNetGoogle Scholar
  437. [A1]
    Clément, Ph., Heijmans, H.J.A.M., Angenent, S., Duijn, C.J. van and Pagter, B. de: One-parameter semigroups, CWI Monographs, 5, North-Holland, 1987.zbMATHGoogle Scholar
  438. [A2]
    Pazy, A.: Semigroups of linear operators and applications to partial differential equations, Springer, 1983.zbMATHGoogle Scholar
  439. [A3]
    Martin, R.H.: Nonlinear operators and differential equations in Banach spaces, Wiley, 1976.zbMATHGoogle Scholar
  440. [A4]
    Simon, B.: Functional integration and quantum physics, Acad. Press, 1979, pp. 4–6.zbMATHGoogle Scholar
  441. [A5]
    Trotter, H.: ‘On the product of semigroups of operators’, Proc. Amer. Math. Soc. 10 (1959), 545–551.MathSciNetzbMATHGoogle Scholar
  442. [1]
    Hille, E. and Phillips, R.: Functional analysis and semigroups, Amer. Math. Soc, 1957.zbMATHGoogle Scholar
  443. [2]
    Vuvunikyan, Yu.M.: ‘Evolutionary representations of algebras of generalized functions’, in Theory of operators in function spaces, Novosibirsk, 1977, pp. 99–120 (in Russian).Google Scholar
  444. [3]
    Zabreiko, P.P. and Zafievskiῐ, A.V.: ‘On a certain class of semigroups’, Soviet Math. Dokl. 10, no. 6 (1969), 1523–1526.Google Scholar
  445. [3a]
    Zabreiko, P.P. and Zafievskiῐ, A.V.: ‘On a certain class of semigroups’, (Dokl. Akad. Nauk SSSR 189, no. 5 (1969), 934–937)MathSciNetGoogle Scholar
  446. [4]
    Zafievskiῐ, A.V.: Trudy Mat. Inst. Voronezh. Univ. 1 (1970), 206–210.Google Scholar
  447. [5]
    Yosida, K.: Functional analysis, Springer, 1980.zbMATHGoogle Scholar
  448. [6]
    Kreῐn, S.G.: Linear differential equations in Banach space, Amer. Math. Soc, 1971 (translated from the Russian).Google Scholar
  449. [7]
    Sil’chenko, Yu.T.: ‘An evolutionary equation with an operator generating a nonlinear semigroup’, Differential Equations 15, no. 2 (1979), 255–258.MathSciNetzbMATHGoogle Scholar
  450. [7a]
    Sil’chenko, Yu.T.: ‘An evolutionary equation with an operator generating a nonlinear semigroup’, (Differentsiavnye Uravneniya 15, no. 2 (1979), 363–366)MathSciNetzbMATHGoogle Scholar
  451. [8]
    Chazarain, J.: ‘Problèmes de Cauchy abstracts et applications à quelques problèmes mixtes’, J. Funct. Anal. 7, no. 3 (1971), 386–446.MathSciNetzbMATHGoogle Scholar
  452. [9]
    Ciorânescu, I.: ‘La caracterisation spectrale d’opérateur, générateurs des semi-groupes distributions d’ordre fini de croissance’, J. Math. Anal. Appl. 34 (1971), 34–41.MathSciNetGoogle Scholar
  453. [10]
    Ciorânescu, I.: ‘A characterization of distribution semigroups of finite growth order’, Rev. Roum. Math. Pures Appl. 22, no. 8 (1977), 1053–1068.zbMATHGoogle Scholar
  454. [11]
    Kato, T.: ‘A characterization of holomorphic semigroups’, Proc. Amer. Math. Soc. 25, no. 3 (1970), 495–498.MathSciNetzbMATHGoogle Scholar
  455. [12]
    Lions, J.: ‘Les semigroupes distributions’, Portugal. Math. 19 (1960), 141–164.MathSciNetzbMATHGoogle Scholar
  456. [13]
    Pazy, A.: ‘On the differentiability and compactness of semigroups of linear operators’, J. Math. Mech. 17, no. 12 (1968), 1131–1141.MathSciNetzbMATHGoogle Scholar
  457. [14]
    Pazy, A.: ‘Approximations of the identity operator by semigroups of linear operators’, Proc. Amer. Math. Soc. 30, no. 1 (1971), 147–150.MathSciNetzbMATHGoogle Scholar
  458. [15]
    Ushijima, T.: ‘On the abstract Cauchy problems and semigroups of linear operators in locally convex spaces’. Sci. Papers College Gen. Educ. Univ. Tokyo 21 (1971), 93–122.MathSciNetzbMATHGoogle Scholar
  459. [16]
    Ushijima, T.: ‘On the generation and smoothness of semigroups of linear operators’, J. Fac. Sci. Univ. Tokyo, Sec. 1A 19, no. 1 (1972), 65–127.MathSciNetzbMATHGoogle Scholar
  460. [17]
    Wild, C.: ‘Semi-groupes de croissance α<l holomorphes’, C.R. Acad. Sci. Paris Sér. A 285 (1977), 437–440. English abstract.MathSciNetzbMATHGoogle Scholar
  461. [18]
    Gol’dsteῐn, J.A.: Semigroups of linear operators and application, Oxford Univ. Press, 1985 (translated from the Russian).Google Scholar
  462. [19]
    Pazy, A.: Semigroups of linear operators and application to partial differential equations, Springer, 1983.Google Scholar
  463. [20]
    Clément, Ph. and Heijmans, H.J.A.M., et al.: One-parameter semigroups, CWI Monographs, 5, North-Holland, 1987.zbMATHGoogle Scholar
  464. [A1]
    Butzer, P.L. and Berens, H.: Semigroups of operators and approximation, Springer, 1967.Google Scholar
  465. [A2]
    Kellermann, H. and Hieber, M.: ‘Integrated semigroups’, J. Funct. Anal. 84 (1989), 160–180.MathSciNetGoogle Scholar
  466. [A3]
    Miyadera, I. and Tanaka, N.: ‘Exponentially bounded c-semigroups and integrated semigroups’, Tokyo J. Math. 12 (1989), 99–115.MathSciNetzbMATHGoogle Scholar
  467. [1]
    Clifford, A.H. and Preston, G.B.: The algebraic theory of semigroups, 2, Amer. Math. Soc, 1967.zbMATHGoogle Scholar
  468. [2]
    Shevrin, L.N.: ‘Some finiteness conditions in semigroup theory’, Izv. Akad. Nauk SSSR Ser. Mat. 29, no. 3 (1965), 553–566 (in Russian).MathSciNetzbMATHGoogle Scholar
  469. [3]
    Shevrin, L.N.: ‘A general theorem concerning semi-groups with certain finiteness conditions’, Math. Notes 15, no. 6 (1974), 552–557.zbMATHGoogle Scholar
  470. [3a]
    Shevrin, L.N.: ‘A general theorem concerning semi-groups with certain finiteness conditions’, (Mat. Zametki 15, no. 6 (1974), 925–935)MathSciNetzbMATHGoogle Scholar
  471. [4]
    Shevrin, L.N.: ‘On the theory of periodic semigroups’, Izv. Vuzov. Mat. 5 (1974), 205–215 (in Russian).Google Scholar
  472. [5]
    Ershova, T.I.: ‘Inverse semigroups with certain finiteness conditions’, Izv. Vyzov. Mat. 11 (1977), 7–14 (in Russian).Google Scholar
  473. [6]
    Hotzel, E.: ‘On finiteness conditions in semigroups’, J. of Algebra 60, no. 2 (1979), 352–370.MathSciNetzbMATHGoogle Scholar
  474. [7]
    Kozhukov, I.B.: ‘On semigroups with minimal or maximal condition on left congruences’, Semigroup Forum 21, no. 4 (1980), 337–350.MathSciNetGoogle Scholar
  475. [8]
    Pastijn, F.: ‘Embedding semigroups in semibands’, Semigroup Forum 14, no. 3 (1977), 247–264.MathSciNetzbMATHGoogle Scholar
  476. [1]
    Cartan, H. and Eilenberg, S.: Homologkai algebra, Princeton Univ. Press, 1956.Google Scholar
  477. [2A]
    Skornyakov, L.A. and Mikhalev, A.V.: ‘Modules’, Itogi Nauk. i Tekhn. Algebra. Topol. Geom. 14 (1976), 57–190 (in Russian).Google Scholar
  478. [2B]
    Markov, V.T., Mikhalev, A.V., Skornyakov, L.A. and Tuganbaev, A.G.: ‘Modules’, J. Soviet Math. 23, no. 6 (1983), 2642–2706.zbMATHGoogle Scholar
  479. [2Ba]
    Markov, V.T., Mikhalev, A.V., Skornyakov, L.A. and Tuganbaev, A.G.: ‘Modules’, (Itogi Nauk. i Tekhn. Algebra. Topol. Geom. 19 (1981), 31–134)MathSciNetGoogle Scholar
  480. [A1]
    Goodearl, K.R.: Von Neumann regular rings, Pitman, 1979.zbMATHGoogle Scholar
  481. [1]
    Sommerville, D.M.Y.: Proc. Edinburgh Math. Soc. 28 (1910), 25–41.zbMATHGoogle Scholar
  482. [2]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  483. [A1]
    Rosenfeld, B.A. [B.A. Rozenfel’d]: A history of non-Euclidean geometry, Springer, 1988 (translated from the Russian).zbMATHGoogle Scholar
  484. [1]
    Borel, A.: Linear algebraic groups, Benjamin, 1969.zbMATHGoogle Scholar
  485. [2]
    Humphreys, J.E.: Linear algebraic groups, Springer, 1975.zbMATHGoogle Scholar
  486. [3]
    Chevalley, C.: Theorie des groupes de Lie, 2, Hermann, 1951.zbMATHGoogle Scholar
  487. [1]
    Leonov, V.P. and Shiryaev, A.N.: ‘On a method of calculation of semi-invariants’, Theory Probab. Appl. 4, no. 3 (1959), 319–329.zbMATHGoogle Scholar
  488. [1a]
    Leonov, V.P. and Shiryaev, A.N.: ‘On a method of calculation of semi-invariants’, (Teor. Veroyatnost. i Primen. 4, no. 3 (1959), 342–355)Google Scholar
  489. [2]
    Shiryaev, A.N.: Probability, Springer, 1984 (translated from the Russian).zbMATHGoogle Scholar
  490. [A1]
    Stuart, A. and Ord, J.K.: Kendall’s advanced theory of statistics, Griffin, 1987.zbMATHGoogle Scholar
  491. [A2]
    Schmetterer, L.: Introduction to mathematical statistics, Springer, 1974, Chapt. 1, §42.zbMATHGoogle Scholar
  492. [A3]
    Rényi, A.: Probability theory, North-Holland, 1970, Chapt. 3, §15.Google Scholar
  493. [A1]
    Clifford, A.H. and Preston, G.B.: The algebraic theory of semigroups, 1, Amer. Math. Soc, 1961, §1.8.Google Scholar
  494. [1]
    Bourbaki, N.: Algebra, Elements of mathematics, Hermann, 1973, -Chapts. I–III (translated from the French).Google Scholar
  495. [1]
    Korolyuk, V.S. and Turbin, A.F.: Semi-Markov processes and their applications, Kiev, 1976 (in Russian).zbMATHGoogle Scholar
  496. [A1]
    Cinlar, E.: Introduction to stochastic processes, Prentice-Hall, 1975, Chapt. 10.zbMATHGoogle Scholar
  497. [1]
    Jacod, J.: Calcul stochastique et problèmes de martingales, Springer, 1979.zbMATHGoogle Scholar
  498. [2]
    Liptser, R.Sh. and Shiryayev, A.N. [A.N. Shiryaev]: Theory of martingales, Kluwer, 1989 (translated from the Russian).zbMATHGoogle Scholar
  499. [A1]
    Bichteler, K.: The stochastic integral as a vector measure’, in Measure Theory Oberwolfach, 1979, Lecture notes in math., Vol. 794, Springer, 1980, pp. 348–360.Google Scholar
  500. [A2]
    Dellacherie, C.: ‘Un survol de la théorie de l’intégrale stochastique’, in Measure Theory Oberwolfach, 1979, Lecture notes in math., Vol. 794, Springer, 1980, pp. 365–395.Google Scholar
  501. [A3]
    Dellacherie, C. and Meyer, P.A.: Probabilités et potentiels, 2, Hermann, 1980, Chapts. V-VIII: Théorie des martingales.Google Scholar
  502. [A4]
    Metivier, M.: Semimartingales, de Gruyter, 1982.zbMATHGoogle Scholar
  503. [A5]
    Schwartz, L.: ‘Les semi-martingales formelles’, in Sém. Pro-bab. XV, Lecture notes in math., Vol. 850, Springer, 1981, pp. 413–489.Google Scholar
  504. [A6]
    Jacod, J. and Shiryaev, A.N.: Limit theorems for stochastic processes, Springer, 1987.zbMATHGoogle Scholar
  505. [1]
    Birkhoff, G.: Lattice theory, Amer. Math. Soc, 1967.zbMATHGoogle Scholar
  506. [2]
    Maeda, F. and Maeda, S.: Theory of symmetric lattices, Springer, 1970.zbMATHGoogle Scholar
  507. [1]
    Bourbaki, N.: Topological vector spaces, Springer, 1987 (translated from the French).zbMATHGoogle Scholar
  508. [2]
    Rudin, W.: Functional analysis, McGraw-Hill, 1979.Google Scholar
  509. [1]
    Vulikh, B.Z.: Introduction to the theory of partially ordered spaces, Wolters-Noordhoff, 1967 (translated from the Russian).zbMATHGoogle Scholar
  510. [2]
    Kantorovich, L.V., Vulikh, B.Z. and Pinsker, A.G.: Functional analysis in semi-ordered spaces, Moscow-Leningrad, 1950 (in Russian).Google Scholar
  511. [3]
    Schaefer, H.H.: Topological vector spaces, Springer, 1971.Google Scholar
  512. [4]
    Krasnosel’skiĭ, M.A.: Positive solutions of operator equations, Wolters-Noordhoff, 1964 (translated from the Russian).Google Scholar
  513. [5]
    Antonovskiĭ, M.Ya., Boltyanskiĭ, V.G. and Sarymsakov, T.A.: Topological Boolean algebras, Tashkent, 1963 (in Russian).Google Scholar
  514. [6]
    Birkhoff, G.: Lattice theory, Colloq. Publ, 25, Amer. Math. Soc, 1973.Google Scholar
  515. [7]
    Kantorovich, L.V. and Akilov, G.P.: Functional analysis in normed spaces, Pergamon, 1964 (translated from the Russian).zbMATHGoogle Scholar
  516. [8]
    Functional analysis. Mathematical Reference Library, Moscow, 1972 (in Russian).Google Scholar
  517. [9]
    Vulikh, B.Z.: Introduction to the theory of cones in normed spaces, Kalinin, 1977 (in Russian).Google Scholar
  518. [10]
    Krein, M.G. and Rutman, M.A.: ‘Linear operators leaving invariant a cone in a Banach space’, Transl. Amer. Math. Soc. 26 (1956). (Uspekhi Mat. Nauk 3, no. 1 (1948), 3–95)MathSciNetzbMATHGoogle Scholar
  519. [11]
    Bukhvalov, A.V., Veksler, A.I. and Lozanovskiĭ, G.Ya.: ‘Banach lattices — some Banach aspects of their theory’, Russian Math. Surveys 34, no. 2 (1979), 159–212. (Uspekhi Mat. Nauk 34, no. 2 (1979), 137–183)zbMATHGoogle Scholar
  520. [12]
    Akilov, G.P. and Kutateladze, S.S.: Ordered vector spaces, Novosibirsk, 1978 (in Russian).zbMATHGoogle Scholar
  521. [A1]
    Freudenthal, H.: Teilweise geordnete Moduln, Proc. Royal Acad. Sci. Amsterdam 39 (1936), 641–651.Google Scholar
  522. [A2]
    Schaefer, H.H.: Banach lattices and positive operators, Springer, 1974.zbMATHGoogle Scholar
  523. [A3]
    Luxemburg, W.A.J, and Zaanen, A.C.: Riesz spaces, I, North-Holland, 1971.zbMATHGoogle Scholar
  524. [A4]
    Zaanen, A.C.: Riesz spaces, II, North-Holland, 1982.Google Scholar
  525. [A1]
    Rowen, L.: Ring theory, 1, Acad. Press, 1988, p. 217.Google Scholar
  526. [1]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  527. [A1]
    Rosenfeld, B.A. [B.A. Rozenfel’d]: A history of non-Euclidean geometry, Springer, 1988 (translated from the Russian).zbMATHGoogle Scholar
  528. [1]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  529. [A1]
    Rosenfeld, B.A. [B.A. Rozenfel’d]: A history of non-Euclidean geometry, Springer, 1988 (translated from the Russian).zbMATHGoogle Scholar
  530. [1]
    Enzyklopaedie der Elementarmathematik, 4. Geometrie, Deutsch. Verlag Wissenschaft., 1967 (translated from the Russian).Google Scholar
  531. [2]
    Lyusternik, L.A.: Convex figures and poly hedra, Moscow, 1956 (in Russian).Google Scholar
  532. [3]
    Brückner, M.: Vielecke und Vielflache. Theorie und Geschichte, Teubner, 1900.zbMATHGoogle Scholar
  533. [4]
    Wenninger, M.: Polyhedron models, Cambridge Univ. Press, 1971.zbMATHGoogle Scholar
  534. [A1]
    Coxeter, H.S.M.: ‘Regular and semi-regular polytopes I’, Math. Z. 46(1940), 380–407.MathSciNetGoogle Scholar
  535. [A2]
    Coxeter, H.S.M.: ‘Regular and semi-regular polytopes II’, Math. Z. 188(1985), 559–591.MathSciNetzbMATHGoogle Scholar
  536. [A3]
    Coxeter, H.S.M.: ‘Regular and semi-regular polytopes III’, Math. Z. 200(1988), 3–45.MathSciNetzbMATHGoogle Scholar
  537. [A4]
    Robertson, S.A.: Polytopes and symmetry, Cambridge Univ. Press, 1984.zbMATHGoogle Scholar
  538. [A5]
    Fejes Toth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum, Springer, 1972.zbMATHGoogle Scholar
  539. [A6]
    Kepler, J.: Strena: The six-cornered snowflake, Oxford Univ. Press, 1966.Google Scholar
  540. [A7]
    Senechal, M. and Fleck, G.: Shaping space, Birkhäuser, 1988.zbMATHGoogle Scholar
  541. [A8]
    Ball, W.W.R. and Coxeter, H.S.M.: Mathematical recreations and essays, Dover, 1987, Chapt. 5.Google Scholar
  542. [1]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  543. [A1]
    Rosenfeld, B.A. [B.A. Rozenfel’d]: A history of non-Euclidean geometry, Springer, 1988 (translated from the Russian).zbMATHGoogle Scholar
  544. [A2]
    O’Neill, B.: Semi-Riemannian geometry, Acad. Press, 1983.zbMATHGoogle Scholar
  545. [A1]
    Cohn, P.M.: Algebra, 2, Wiley, 1989, Chapt. 5.zbMATHGoogle Scholar
  546. [1]
    Steinberg, R.G.: Lectures on Chevalley groups, Yale Univ. Press, 1968.zbMATHGoogle Scholar
  547. [2]
    Humphreys, J.E.: Linear algebraic groups, Springer, 1975.zbMATHGoogle Scholar
  548. [A1]
    Springer, T.A.: Linear algebraic groups, Birkhäuser, 1981.zbMATHGoogle Scholar
  549. [1]
    Borel, A.: Linear algebraic groups, Benjamin, 1969.zbMATHGoogle Scholar
  550. [2]
    Merzlyakov, Yu.I.: Rational groups, Moscow, 1980 (in Russian).zbMATHGoogle Scholar
  551. [3]
    Humphreys, J.E.: Linear algebraic groups, Springer, 1975.zbMATHGoogle Scholar
  552. [1]
    Bourbaki, N.: Algèbre, Eléments de mathématiques, Hermann, 1970, Chapts. I–III.Google Scholar
  553. [1]
    Kurosh, A.G.: The theory of groups, Chelsea, reprint, 1960 (translated from the Russian).Google Scholar
  554. [2]
    Pontryagin, L.S.: Topological groups, Princeton Univ. Press, 1958 (translated from the Russian).Google Scholar
  555. [A1]
    Bourbaki, N.: Groupes et algèbres de Lie, Hermann & Mas-son, 1960–1982, Chapts. I–IX.zbMATHGoogle Scholar
  556. [A2]
    Hochschild, G.: The structure of Lie groups, Holden-Day, 1965.zbMATHGoogle Scholar
  557. [1]
    Bourbaki, N.: Algèbre, Eléments de mathématique, 2, Hermann, 1959.zbMATHGoogle Scholar
  558. [1]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  559. [A1]
    Rosenfeld, B.A. [B.A. Rozenfel’d]: A history of non-Euclidean geometry, Springer, 1988 (translated from the Russian).zbMATHGoogle Scholar
  560. [1]
    Lusin, N.N. [N.N. Luzin]: Leçons sur les ensembles analytique, Gauthier-Villars, 1930.Google Scholar
  561. [2]
    Novikov, P.S.: ‘On the countable separability of analytic sets’, Dokl. Akad. Nauk SSSR 3–4, no. 3 (1934), 145–149 (in Russian). French abstract.Google Scholar
  562. [3]
    Frolik, Z.: ‘A survey of separable desciptive theory of sets and spaces’, Czechoslovak. Math. J. 20 (1970), 406–467.MathSciNetGoogle Scholar
  563. [4]
    Ostaszewski, A.J.: ‘On Luzin’s separation principles in Haus-dorff spaces’, Proc. London Math. Soc. 27, no. 4 (1973), 649–666.MathSciNetzbMATHGoogle Scholar
  564. [5]
    Rogers, C.A.: ‘Luzin’s first separation axiom’, J. London Math. Soc. 3, no. 1 (1971), 103–108.MathSciNetzbMATHGoogle Scholar
  565. [6]
    Rogers, C.A.: ‘Luzin’s second separation theorem’, J. London Math. Soc. 6, no. 3 (1973), 491–503.MathSciNetzbMATHGoogle Scholar
  566. [7]
    Kuratowski, K.: Topology, 1, Acad. Press, 1966 (translated from the French).Google Scholar
  567. [A1]
    Jech, T.: Set theory, Acad. Press, 1978, p. 523ff.Google Scholar
  568. [1]
    Waerden, B.L. van der: Algebra, 1–2, Springer, 1967–1971 (translated from the German).zbMATHGoogle Scholar
  569. [2]
    Curtis, C.W. and Reiner, I.: Representation theory of finite groups and associative algebras, Interscience, 1962.zbMATHGoogle Scholar
  570. [A1]
    Auslander, M. and Goldman, O.: The Brauer group of a commutative ring’, Trans. Amer. Math. Soc. 97 (1960), 367–409.MathSciNetGoogle Scholar
  571. [A2]
    Meyer, F. de and Ingraham, E.: Separable algebras over commutative rings, Lecture notes in math., 181, Springer, 1971.Google Scholar
  572. [A3]
    Knus, M.-A. and Ojangouren, M.: Théorie de la descente et algèbres d’Azumaya, Lecture notes in math., 389, Springer, 1974.zbMATHGoogle Scholar
  573. [A4]
    Caenepeel, S. and Oystaeyen, F. van: Brauer groups and the cohomology of graded rings, M. Dekker, 1988.zbMATHGoogle Scholar
  574. [A1]
    Bourbaki, N.: Algèbre commutative, Eléments de mathématique, Hermann, 1961, Chapt. 3. Graduations, filtrations, et topologies.Google Scholar
  575. [A1]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.zbMATHGoogle Scholar
  576. [1]
    Doob, J.L.: Stochastic processes, Chapman and Hall, 1953.zbMATHGoogle Scholar
  577. [2]
    Loève, M.: Probability theory, Princeton Univ. Press, 1963.zbMATHGoogle Scholar
  578. [3]
    Gihman, I.I. [I.I. Gikhman] and Skorohod, A.V. [A.V. Skorokhod]: The theory of stochastic processes, 1, Springer, 1971 (translated from the Russian).Google Scholar
  579. [4]
    Doob, J.L.: ‘Probability in function space’, Bull. Amer. Math. Soc. 53, no. 1 (1947), 15–30.MathSciNetzbMATHGoogle Scholar
  580. [5]
    Nelson, E.: ‘Regular probability measures on function space’, Ann. of Math. 69, no. 3 (1959), 630–643.MathSciNetzbMATHGoogle Scholar
  581. [1]
    Clifford, A.H. and Preston, G.B.: The algebraic theory of semigroups, 1, Amer. Math. Soc, 1961.zbMATHGoogle Scholar
  582. [1]
    Arkhangel’skiï, A.V. and Ponomarev, V.I.: Fundamentals of general topology: problems and exercises, Reidel, 1984, p. 43ff (translated from the Russian).zbMATHGoogle Scholar
  583. [1]
    Aleksandrov, P.S.: An introduction to set theory and general topology, Moscow, 1977 (in Russian).Google Scholar
  584. [A1]
    Engelking, R.: General topology, Heldermann, 1989.zbMATHGoogle Scholar
  585. [A2]
    Kelley, J.L.: General topology, Springer, 1975.zbMATHGoogle Scholar
  586. [A3]
    Querenburg, B. von: Mengentheoretische Topologie, Springer, 1973.zbMATHGoogle Scholar
  587. [1]
    Andronov, A.A., Leontovich, E.A., Gordon, I.I. and Maier, A.G.: Qualitative theory of second-order dynamic systems, Wiley, 1973 (translated from the Russian).zbMATHGoogle Scholar
  588. [2]
    Andronov, A.A., Leontovich, E.A., Gordon, I.I. and Maier, A.G.: Theory of bifurcations of dynamic systems on a plane, Israel Progr. Sci. Transi., 1971 (translated from the Russian).Google Scholar
  589. [3]
    Bautin, N.N. and Leontovich, E.A.: Methods and ways of a qualitative investigation of dynamical systems on the plane, Moscow, 1976 (in Russian).Google Scholar
  590. [4]
    Hartzman, C.S.: ‘Separatrices and singular points’, Aequationes Math. 20, no. 1 (1980), 59–72.MathSciNetzbMATHGoogle Scholar
  591. [A1]
    MacLane, S.: Homology, Springer, 1963, Chapt. IX, §3.zbMATHGoogle Scholar
  592. [1]
    Gnedenko, B.V. and Kolmogorov, A.N.: Limit distributions for sums of independent random variables, Addison-Wesley, 1954 (translated from the Russian).zbMATHGoogle Scholar
  593. [2]
    Prokhorov, Yu.V. and Rozanov, Yu.A.: Probability theory, Springer, 1969 (translated from the Russian).zbMATHGoogle Scholar
  594. [3]
    Petrov, V.V.: Sums of independent random variables, Springer, 1975 (translated from the Russian).Google Scholar
  595. [4]
    Feller, W.: An introduction to probability theory and its applications, 2, Wiley, 1971.zbMATHGoogle Scholar
  596. [A1]
    Loève, M.: Probability theory, I, Springer, 1977.zbMATHGoogle Scholar
  597. [1]
    Gentzen, G.: ‘Untersuchungen über das logische Schliessen’, Math. Z. 39 (1935), 176–210; 405–431. (English translation: The collected papers of Gerhard Gentzen, North-Holland, 1969; edited by M.E. Szabo).MathSciNetGoogle Scholar
  598. [2]
    Takeuti, G.: Proof theory, North-Holland, 1975.Google Scholar
  599. [3]
    Dragalin, A.G.: Mathematical intuitionism. Introduction to proof theory, Amer. Math. Soc, 1988 (translated from the Russian).zbMATHGoogle Scholar
  600. [4]
    Feys, R.: Modal logics, Gauthier-Villars, 1965.zbMATHGoogle Scholar
  601. [A1]
    Szabo, M.E.: Algebra of proofs, North-Holland, 1978.zbMATHGoogle Scholar
  602. [A1]
    Hodges, W.: ‘Elementary predicate logic’, in D. Gabbay and F. Guenther (eds.): Handbook of philosophical logic, Vol. I, Reidel, 1983, pp. 1–131.Google Scholar
  603. [A2]
    Sundholm,G.: ‘Systems of deduction’, in D. Gabbay and F. Guenther (eds.): Handbook of philosophical logic, Vol. I, Reidel, 1983, pp. 133–188, §3.Google Scholar
  604. [1]
    Wald, A.: Sequential analysis, Wiley, 1947.zbMATHGoogle Scholar
  605. [2]
    Shiryaev, A.N.: Statistical sequential analysis, Amer. Math. Soc, 1973 (translated from the Russian).zbMATHGoogle Scholar
  606. [3]
    Shiryaev, A.N.: Optimal stopping rules, Springer, 1978 (translated from the Russian).zbMATHGoogle Scholar
  607. [1]
    Siegmund, D.: Sequential analysis, Springer, 1985.zbMATHGoogle Scholar
  608. [A2]
    Lerche, R.: Boundary crossing of Brownian motion: its relation to the law of the iterated logarithm and to sequential analysis, Springer, 1986.zbMATHGoogle Scholar
  609. [1]
    Faddeev, D.K. and Faddeeva, V.N.: Computational methods of linear algebra. Freeman, 1963 (translated from the Russian).Google Scholar
  610. [2]
    Krylov, V.I., Bobkov, V.V. and Monastyrnyĭ, P.I.: Numerical methods, 1–2, Moscow, 1976–1977 (in Russian).zbMATHGoogle Scholar
  611. [3]
    Collatz, L.: Funktionalanalysis und numerische Mathematik, Springer, 1964.zbMATHGoogle Scholar
  612. [A1]
    Coddington, E.A. and Levinson, N.: Theory of ordinary differential equations, McGraw-Hill, 1955.zbMATHGoogle Scholar
  613. [A2]
    Cronin, J.: Fixed points and topological degree in nonlinear analysis, Amer. Math. Soc, 1964.zbMATHGoogle Scholar
  614. [A1]
    Engelking, R.: General topology, Heldermann, 1989.zbMATHGoogle Scholar
  615. [A1]
    Dugundji, J.: Topology, Allyn & Bacon, 1966.zbMATHGoogle Scholar
  616. [A2]
    Kelley, J.L.: General topology, v. Nostrand, 1955.zbMATHGoogle Scholar
  617. [1]
    Anderson, T.M.: The statistical analysis of time series, Wiley, 1971.zbMATHGoogle Scholar
  618. [2]
    Kendall, M.G. and Stewart, A.: The advanced theory of statistics, 3. Design and analysis, and time series, Griffin, 1966.Google Scholar
  619. [3]
    Hannan, E.J.: Time series analysis, Methuen, London, 1960.zbMATHGoogle Scholar
  620. [A1]
    Robinson, D.J.S.: Finiteness conditions and generalized soluble groups, Springer, 1972, Part 1, Chapt. 1.Google Scholar
  621. [1]
    Kolmogorov, A.N. and Fomin, S.V.: Elements of the theory of functions and functional analysis, 1–2, Graylock, 1957–1961 (translated from the Russian).Google Scholar
  622. [2]
    Luzin, N.N.: Theory of functions of a real variable, Moscow, 1948 (in Russian).Google Scholar
  623. [3]
    Nikol’skiĭ, S.M.: Approximation of functions of several variables and imbedding theorems, Springer, 1975 (translated from the Russian).Google Scholar
  624. [4]
    Hardy, G.H.: Divergent series, Clarendon, 1949.zbMATHGoogle Scholar
  625. [5]
    Bakhvalov, N.S.: Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).Google Scholar
  626. [6]
    Ilin, V.A. and Poznyak, E.G.: Fundamentals of mathematical analysis, 1–2, Mir, 1982 (translated from the Russian).Google Scholar
  627. [7]
    Kudryavtsev, L.D.: A course of mathematical analysis, 1–3, Moscow, 1988–1989 (in Russian).Google Scholar
  628. [8]
    Nikol’skiï, S.M.: A course of mathematical analysis, 1–2, Mir, 1977 (translated from the Russian).zbMATHGoogle Scholar
  629. [9]
    Nemytskiĭ, V., Sludskaya, M. and Cherkasov, A.: A course of mathematical analysis, 1–2, Moscow-Leningrad, 1944 (in Russian).Google Scholar
  630. [A1]
    Bromwich, T.J.: An introduction to the theory of infinite series, Macmillan, 1949.Google Scholar
  631. [A2]
    Stromberg, K.: Introduction to classical real analysis, Wads-worth, 1981.zbMATHGoogle Scholar
  632. [A3]
    Bary, N.K. [N.K. Bari]: A treatise on trigonometric series, Pergamon, 1964 (translated from the Russian).zbMATHGoogle Scholar
  633. [A4]
    Knopp, K.: Theorie und Anwendung der unendlichen Reihen, Springer, 1964. English translation: Blackie, 1951.zbMATHGoogle Scholar
  634. [A5]
    Zygmund,A.: Trigonometric series, 1–2, Cambridge Univ. Press, 1988.zbMATHGoogle Scholar
  635. [1]
    Kirillov, A.A.: Elements of the theory of representations, Springer, 1976 (translated from the Russian).zbMATHGoogle Scholar
  636. [2]
    Nguyen Huu Anh: ‘Classification of connected unimodular Lie groups with discrete series’, Ann. Inst. Fourier 30, no. 1 (1980), 159–192.MathSciNetzbMATHGoogle Scholar
  637. [3]
    Cailliz, J.: ‘Les sous-groupes paraboliques de SU(p, q) et Sp(n, R) et applications à l’étude des réprésentations’, in J. Oberdörfer (ed.): Anal. Harmonique sur les Groupes de Lie (Sem. Nancy-Strassbourg, 1976–1978) II, Lecture notes in math., Vol. 739, Springer, 1979, pp. 51–106.Google Scholar
  638. [1]
    Serre, J.P.: ‘Homologie singulière des espaces fibrés. Applications’, Ann. of Math. 54 (1951), 425–505.MathSciNetzbMATHGoogle Scholar
  639. [A1]
    Spanier, E.H.: Algebraic topology, McGraw-Hill, 1966, Chapt. 2, §2; Chapt. 7, §2.zbMATHGoogle Scholar
  640. [1]
    Serre, J-.P.: ‘Groupes d’homotopie et classes de groupes abéliens’, Ann. of Math. 58, no. 2 (1953), 258–294.MathSciNetzbMATHGoogle Scholar
  641. [2]
    Faith, C.: Algebra: rings, modules and categories, 1, Springer, 1973.zbMATHGoogle Scholar
  642. [3]
    Popesco, N. and Gabriel, P.: ‘Caractérisations des catégories abéliennes avec générateurs et limites inductives exactes’, C.R. Acad. Sci. Paris 258, no. 17 (1964), 4188–4190.MathSciNetzbMATHGoogle Scholar
  643. [A1]
    Popescu, N.: Abelian categories with applications to rings and modules, Acad. Press, 1973.zbMATHGoogle Scholar
  644. [1]
    Bourbaki, N.: Algèbre, Eléments de mathématiques, 2, Hermann, 1942–1959.zbMATHGoogle Scholar
  645. [2]
    Lang, S.: Algebra, Addison-Wesley, 1984.zbMATHGoogle Scholar
  646. [A1]
    Tits, J.: Buildings and BN-pairs of spherical type, Springer, 1974, Chapt. 8.zbMATHGoogle Scholar
  647. [A2]
    Dieudonné, J.: La géométrie des groupes classiques, Springer, 1963.zbMATHGoogle Scholar
  648. [1]
    Lectures on the sets of Georg Cantor, New ideas in mathematics, 6, St. Petersburg, 1914 (in Russian).Google Scholar
  649. [2]
    Shikhanovich, Yu.A.: Introduction to modem mathematics, Moscow, 1965 (in Russian).Google Scholar
  650. [3]
    Kondakov, N.I.: Logical reference-dictionary, Moscow, 1975 (in Russian).Google Scholar
  651. [4]
    Bourbaki, N.: Elements of mathematics. Theory of sets, Addison-Wesley, 1968 (translated from the French).zbMATHGoogle Scholar
  652. [5]
    Novikov, P.S.: Elements of mathematical logic, Oliver & Boyd and Acad. Press., 1964 (translated from the Russian).zbMATHGoogle Scholar
  653. [6]
    Cohn, P.M.: Universal algebra, Reidel, 1981.zbMATHGoogle Scholar
  654. [7]
    Shoenfield, J.R.: Mathematical logic, Addison-Wesley, 1967.zbMATHGoogle Scholar
  655. [A1]
    Grätzer, G.: Universal algebra, Springer, 1979.zbMATHGoogle Scholar
  656. [A2]
    Halmos, P.: Naive set theory, v. Nostrand-Reinhold, 1960.zbMATHGoogle Scholar
  657. [A3]
    Meschkowski, H.: Hundert Jahre Mengenlehre, DTV, 1973.zbMATHGoogle Scholar
  658. [A4]
    Suppes, P.: Axiomatic set theory, v. Nostrand, 1965.Google Scholar
  659. [A5]
    Levy, A.: Basic set theory, Springer, 1979.zbMATHGoogle Scholar
  660. [A6]
    Fraenkei, A.A.: Abstract set theory, North-Holland, 1961.Google Scholar
  661. [A7]
    Shoeneield, J.R.: Axioms of set theory’, in J. Barwise (ed.): Handbook of Mathematical Logic, North-Holland, 1978, pp. 321–345.Google Scholar
  662. [A8]
    Barwise, J.: Handbook of mathematical logic, North-Holland, 1978.Google Scholar
  663. [A9]
    Cantor, G.: Contributions to the founding of the theory of transfinite numbers, Dover, reprint, 1955 (translated from the German).Google Scholar
  664. [1]
    Kantorovich, L.V. and Akilov, G.P.: Functional analysis, Pergamon, 1982 (translated from the Russian).zbMATHGoogle Scholar
  665. [A1]
    Dunford, N. and Schwartz, J.T.: Linear operators. General theory, 1, Interscience, 1958.Google Scholar
  666. [1]
    Aleksandrov, P.S.: Introduction to the general theory of sets and functions, Moscow-Leningrad, 1948 (in Russian).Google Scholar
  667. [2]
    Bolzano, B.: Paradoxes of the infinite, Routledge & Kegan, 1950 (translated from the German).zbMATHGoogle Scholar
  668. [3]
    Lectures on the sets of George Cantor, New ideas in mathematics, 6, St. Petersburg, 1914 (in Russian).Google Scholar
  669. [4]
    Hausdorff, F.: Grundzüge der Mengenlehre, Leipzig, 1914. Reprinted (incomplete) English translation: Set theory, Chelsea (1978).zbMATHGoogle Scholar
  670. [5]
    Kuratowski, K. and Mostowski, A.: Set theory, North-Holland, 1968.zbMATHGoogle Scholar
  671. [6]
    Bourbaki, N.: Elements of mathematics. Theory of sets, Addison-Wesley, 1968 (translated from the French).zbMATHGoogle Scholar
  672. [A1]
    Frafnkff, A.A., Bar-Hillel, Y. and Levy, A.: Foundations of set theory, North-Holland, 1973.Google Scholar
  673. [A2]
    Kuratowski, K.: Topology, 1, Acad. Press, 1966 (translated from the French).Google Scholar
  674. [1]
    Freyd, P.: ‘Concreteness’, J. Pure Appl. Algebra 3 (1973), 171–191.MathSciNetzbMATHGoogle Scholar
  675. [2]
    Lawvere, F.W.: ‘An elementary theory of the category of sets’, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1506–1511.MathSciNetzbMATHGoogle Scholar
  676. [3]
    Skornyakov, L.A.: ‘A characterization of the category of polygons’, Mat. Sb. 80 (1969), 492–502 (in Russian).MathSciNetGoogle Scholar
  677. [A1]
    Tierney, M.: ‘Sheaf theory and the continuum hypothesis’, in Toposes, Algebraic Geometry and Logic, Lecture notes in math., Vol. 274, Springer, 1972, pp. 13–42.Google Scholar
  678. [A1]
    Renyi, A.: A diary on information theory, Akad. Kaido & Wiley, 1987.zbMATHGoogle Scholar
  679. [1]
    Shapley, L.S.: ‘A value for n-person games’, in Contributions to the Theory of Games, Vol. 2, Princeton Univ. Press, 1953, pp. 307–317.Google Scholar
  680. [A1]
    Aumann, R.J. and Shapley, L.S.: Values of non-atomic games, Princeton Univ. Press, 1974.zbMATHGoogle Scholar
  681. [A2]
    Owen, G.: Game theory, Acad. Press, 1982.zbMATHGoogle Scholar
  682. [A3]
    Friedman, J.W.: Oligopoly and the theory of games, North-Holland, 1977.zbMATHGoogle Scholar
  683. [A1]
    Rapoport, A.: N-person game theory, Univ. of Michigan Press, 1970, pp. 92; 97–100.zbMATHGoogle Scholar
  684. [1]
    Whitney, H.: Geometric integration theory, Princeton Univ. Press, 1957.zbMATHGoogle Scholar
  685. [A1]
    Bredon, G.E.: Sheaf theory, McGraw-Hill, 1967.zbMATHGoogle Scholar
  686. [A2]
    Godement, R.: Topologie algébrique et théorie des faisceaux, Hermann, 1958.zbMATHGoogle Scholar
  687. [1]
    Bredon, G.E.: Sheaf theory, McGraw-Hill, 1967.zbMATHGoogle Scholar
  688. [2]
    Godement, R.: Topologie algébrique et théorie des faisceaux, Hermann, 1958.zbMATHGoogle Scholar
  689. [3]
    Grothendieck, A.: ‘Sur quelques points d’algèbre homologique’, Tohoku Math. J. 9 (1957), 119–221.MathSciNetzbMATHGoogle Scholar
  690. [4]
    Swan, R.: The theory of sheaves, Chicago Univ. Press, 1964.zbMATHGoogle Scholar
  691. [5]
    Sklyarenko, E.G.: Homology and cohomology of general spaces, Springer, Forthcoming (translated from the Russian).Google Scholar
  692. [A1]
    Gray, J.W.: ‘Fragments of the history of sheaf theory’, in Applications of Sheaves, Lecture notes in math., Vol. 753, Springer, 1979, pp. 1–79.Google Scholar
  693. [A2]
    Fourman, M.P. and Scott, D.S.: ‘Sheaves and logic’, in Applications of Sheaves, Lecture notes in math., Vol. 753, Springer, 1979, pp. 302–401.Google Scholar
  694. [A3]
    Mulvey, C.J.: ‘Representations of rings and modules’, in Applications of Sheaves, Lecture notes in math., Vol. 753, Springer, 1979, pp. 542–585.Google Scholar
  695. [A4]
    Borceux, F. and van den Bossche, G.: Algebra in a localic topos with applications to ring theory, Lecture notes in math., 1038, Springer, 1983.zbMATHGoogle Scholar
  696. [A5]
    Tennison, B.R.: Sheaf theory, Cambridge Univ. Press, 1975.zbMATHGoogle Scholar
  697. [A6]
    Artin, M.: Grothendieck topologies, Harvard Univ. Press, 1962.zbMATHGoogle Scholar
  698. [A7]
    Johnstone, P.T.: Topos theory, Acad. Press, 1977.zbMATHGoogle Scholar
  699. [A8]
    Grothendieck, A., et al.: Théorie de topos et cohomologie des schémas (SGA 4–5), Lecture notes in math., 269, 270, 305, 589, Springer, 1972–1977.Google Scholar
  700. [A9]
    Makkai, M. and Reyes, G.E.: First order categorical logic, Lecture notes in math., 611, Springer, 1977.zbMATHGoogle Scholar
  701. [A10]
    Tierney, M.: ‘Sheaf theory and the continuum hypothesis’, in F.W. Lawvere (ed.): Toposes, Algebraic Geometry and Logic (Dalhousic Univ., Jan. 1971), Lecture notes in math., Vol. 274, Springer, 1972, pp. 13–42.Google Scholar
  702. [A11]
    Serre, J.-P.: ‘Faisceaux algébriques cohérents’, Ann. of Math. 61 (1955), 197–278.MathSciNetzbMATHGoogle Scholar
  703. [A12]
    Deligne, P., et al.: Cohomologie étale (SGA 4 1/2), Lecture notes in math., 569, Springer, 1977.zbMATHGoogle Scholar
  704. [A13]
    Milne, J.S.: Étale cohomology, Princeton Univ. Press, 1980.zbMATHGoogle Scholar
  705. [A14]
    Freitag, E. and Kiehl, R.: Etale cohomology and the Weil conjecture, Springer, 1988.zbMATHGoogle Scholar
  706. [A15]
    Leray, J.: ‘Sur la forme des espaces topologiques et sur les points fixes des répresentations’, J. Math. Pures Appl. 24 (1945), 95–167.MathSciNetzbMATHGoogle Scholar
  707. [A16]
    Leray, J.: ‘L’anneau spectral et l’anneau fibré d’homologie d’un espace localement compact et d’une application continue’, J. Math. Pures Appl. 29 (1950), 1–139.MathSciNetzbMATHGoogle Scholar
  708. [A17]
    Weil, A.: Foundations of algebraic geometry, Amer. Math. Soc., 1946.zbMATHGoogle Scholar
  709. [A18]
    Sem. H. Cartan, 1-, Secr. Math. Inst. H. Poincaré, 1948-.Google Scholar
  710. [A1]
    Gurtin, M.E.: An introduction to continuum mechanics, Acad. Press, 1981, Chapt. IX, §26.zbMATHGoogle Scholar
  711. [1]
    Sheffer, H.M.: ‘A set of five independent postulates for Boolean algebras, with applications to logical constants’, Trans. Amer. Math. Soc. 14 (1913), 481–488.MathSciNetzbMATHGoogle Scholar
  712. [A1]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1950, p. 139.Google Scholar
  713. [A2]
    Marek, W. and Onyszkiewicz, J.: Elements of logic and the foundations of mathematics in problems, Reidel & PWN, 1982, p. 4.zbMATHGoogle Scholar
  714. [1]
    Alumyae, N.A.: ‘Theory of elastic shells and plates’, in Mechanics in the USSR during 50 years, Vol. 3, Moscow, 1972, pp. 227–266 (in Russian).Google Scholar
  715. [2]
    Vekua, I.N.: Generalized analytic functions, Pergamon, 1962 (translated from the Russian).zbMATHGoogle Scholar
  716. [3]
    Wlassow, W.S. [V.Z. Vlasov]: Allgemeine Schalentheorie und ihre Anwendung in der Technik, Akad. Verlag, 1958 (translated from the Russian).zbMATHGoogle Scholar
  717. [4]
    Gol’denveĭzer, A.L.: The theory of thin elastic shells, Pergamon, 1961 (in Russian).Google Scholar
  718. [5]
    Gol’denveĭzer, A.L., Lidskiĭ, V.B. and Tovstik, P.E.: Free vibrations of thin elastic shells, Moscow, 1979 (in Russian).Google Scholar
  719. [6]
    Mushtari, Kh.M. and Galimov, K.: The non-linear theory of elastic shells, Israel Program Scient. Transl., 1961 (translated from the Russian).Google Scholar
  720. [7]
    Novozhilov, V.V.: The theory of thin shells, Noordhoff, 1959 (translated from the Russian).zbMATHGoogle Scholar
  721. [8]
    Pogorelov, A.V.: Geometric methods in the non-linear theory of elastic shells, Moscow, 1967 (in Russian).Google Scholar
  722. [9]
    Strength. Stability. Vibrations. A handbook, 3, Moscow, 1968 (in Russian).Google Scholar
  723. [A1]
    Flügge, W.: Stresses in shells, Springer, 1967 (translated from the German).Google Scholar
  724. [A2]
    Timoshenko, S.P. and Woinowsky-Krieger, S.: Theory of plates and shells, McGraw-Hill, 1959.Google Scholar
  725. [1]
    Sheppard, W.F.: ‘On the calculation of the most probable values of frequency-constants, for data arranged according to equidistant divisions of a scale’, Proc. Lond. Math. Soc. 29 (1898), 353–380.MathSciNetzbMATHGoogle Scholar
  726. [2]
    Cramér, H.: Mathematical methods of statistics, Princeton Univ. Press. 1946.zbMATHGoogle Scholar
  727. [3]
    Wilks, S.S.: Mathematical statistics. Wiley. 1962.zbMATHGoogle Scholar
  728. [4]
    Waerden, B.L. van der: Mathematische Statistik. Springer, 1957.zbMATHGoogle Scholar
  729. [A1]
    Adler, R.L., Coppersmith, D. and Hassner, M.: ‘Algorithms for sliding block codes’, IEEE Trans. Inform. Theory 29 (1983), 5–22.MathSciNetzbMATHGoogle Scholar
  730. [A2]
    Adler, R.L. and Marcus, B.: Topological entropy and equivalence of dynamical systems, Amer. Math. Soc., 1979.Google Scholar
  731. [A3]
    Furstenberg, H.: Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, 1981.zbMATHGoogle Scholar
  732. [A4]
    Hajek, O.: ‘Representations of dynamical systems’, Funkcial. Ekvac. 114 (1971), 25–34.Google Scholar
  733. [A5]
    Kakutani, S.: ‘A proof of Bebutov’s theorem’, J. Differential Equations 4 (1968), 194–201.MathSciNetzbMATHGoogle Scholar
  734. [A6]
    Martin, J.C.: ‘Substitution minimal flows’, Amer. J. Math. 93 (1971), 503–526.MathSciNetzbMATHGoogle Scholar
  735. [A7]
    Nemytskiĭ, V.V. and Stepanov, V.V.: Qualitative theory of differential equations, Princeton Univ. Press, 1960 (translated from the Russian).zbMATHGoogle Scholar
  736. [A8]
    Sell, G.R.: Topological dynamics and ordinary differential equations, v. Nostrand Reinhold, 1971.zbMATHGoogle Scholar
  737. [A1]
    Guckenheimer, J. and Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, 1983.zbMATHGoogle Scholar
  738. [A2]
    Smale, S.: ‘Diffeomorphisms with many periodic points’, in S. Cairns (ed.): Differential and Combinatorial Topology, Princeton Univ. Press, 1963, pp. 63–80.Google Scholar
  739. [A3]
    Nikol’skiĭ, N.K.: Treatise on the shift operator: spectral function theory, Springer, 1986 (translated from the Russian).zbMATHGoogle Scholar
  740. [1]
    Ibragimov, I.A. and Has’minskii, R.Z. [R.Z. Khas’minskiĭ]: Statistical estimation: asymptotic theory, Springer, 1981 (translated from the Russian).zbMATHGoogle Scholar
  741. [1]
    Shmidt, O.Yu.: Selected works, Moscow, 1959, pp. 221–227.Google Scholar
  742. [A1]
    Kegel, O.H. and Wehrfritz, B.A.F.: Locally finite groups, North-Holland, 1973, Chapt. 2, Thm. 2.6.zbMATHGoogle Scholar
  743. [A2]
    Kargapolov, M.I. and Merzlyakov, Yu.I.: Fundamentals of the theory of groups, Springer, 1979, Chapt. 1, §2 (translated from the Russian).zbMATHGoogle Scholar
  744. [1]
    Schnirelmann, L.G. [L.G. Shmrel’man]: ‘Ueber additive Eigenschaften von Zahlen’. Math. Ann. 107 (1933), 649–690.MathSciNetGoogle Scholar
  745. [2]
    Khinchin, A.Ya.: Three pearls of number theory. Graylock, 1952 (translated from the Russian).zbMATHGoogle Scholar
  746. [3]
    Prachar, K.: Primzahlverteilung, Springer, 1957.zbMATHGoogle Scholar
  747. [1]
    Earnshaw, S.: Phil. Trans. Roy. Soc. London 150 (1860), 133–148.Google Scholar
  748. [2]
    Riemann, B.: ‘Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite’, in Gesamm. math. Werke, Dover, reprint, 1953, pp. 156–175.Google Scholar
  749. [3]
    Rankine, W.J.M.: Phil. Trans. Roy. Soc. London 160 (1870), 277–288.Google Scholar
  750. [4]
    Hugoniot, H.: J. École Polytechn. 58 (1889), 1–125.Google Scholar
  751. [5]
    Kochin, N.E.: Collected works, Vol. 2, Moscow-Leningrad, 1949, pp. 5–42 (in Russian).Google Scholar
  752. [6]
    Landau, L.D. and Lifshitz, E.M.: Fluid mechanics, Pergamon, 1959 (translated from the Russian).Google Scholar
  753. [7]
    Weyl, H.: ‘Shock waves in arbitrary fluids’, Comm. Pure Appl. Math. 2 (1949), 103–122.MathSciNetzbMATHGoogle Scholar
  754. [8]
    Gilbarg, D.: ‘The existence and limit behavior of the one-dimensional shock layer’, Amer. J. Math. 73 (1951), 256–274.MathSciNetzbMATHGoogle Scholar
  755. [9]
    Becker, R.: Z. Phys. 8 (1922), 321–362.Google Scholar
  756. [10]
    Courant, R. and Friedrichs, K.O.: Supersonic flow and shock waves, Interscience, 1948.zbMATHGoogle Scholar
  757. [11]
    Sedov, L.I.: A course in continuum mechanics, 1–4, Wolters- Noordhoff, 1971–1972 (translated from the Russian).zbMATHGoogle Scholar
  758. [12]
    Zel’dovich, Ya.B.: Theory of combustion und detonation of gases, Moscow-Leningrad, 1944 (in Russian).Google Scholar
  759. [13]
    Rozhdestvenskiĭ, B.L. and Yanenko, N.N.: Systems of quasilinear equations and their applications to gas dynamics, Amer. Math. Soc., 1983 (translated from the Russian).Google Scholar
  760. [14]
    Oleĭnik, O.A.: ‘Discontinuous solutions of non-linear differential equations’, Uspekhi Mat. Nauk 12, no. 3 (1957), 3–73 (in Russian).Google Scholar
  761. [A1]
    Cercignani, C.: The Boltzmann equation and its applications, Springer, 1988.zbMATHGoogle Scholar
  762. [A2]
    Smoller, J.: Shock waves and reaction-diffusion equations, Springer, 1983.zbMATHGoogle Scholar
  763. [1]
    Bakhvalov, N.S.: Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).Google Scholar
  764. [2]
    Godunov, S.K. and Ryaben’kiĭ, V.S.: The theory of difference schemes, North-Holland, 1964 (translated from the Russian).Google Scholar
  765. [3]
    Krylov, V.I., Bobkov, V.V. and Monastyrnyĭ, P.I.: Numerical methods, 2, Moscow, 1977 (in Russian).zbMATHGoogle Scholar
  766. [4]
    Hall, G. and Watt, J.M. (eds.): Modern numerical methods for ordinary differential equations, Clarendon Press, 1976.zbMATHGoogle Scholar
  767. [A1]
    Ascher, U., Matthey, R.M.M. and Russell, R.: Numerical solution of boundary value problems for ordinary differential equations, Prentice-Hall, 1988.zbMATHGoogle Scholar
  768. [1]
    Laning, J.H. and Battin, R.G.: Random processes in automatic control, McGraw-Hill, 1956.Google Scholar
  769. [A1A]
    Rice, S.O.: ‘Mathematical analysis of random noise’, Bell Systems Techn. J. 23 (1944), 283–332.MathSciNetGoogle Scholar
  770. [A1B]
    Rice, S.O.: ‘Mathematical analysis of random noise’, Bell Systems Techn. J. 24 (1945), 46–156.MathSciNetzbMATHGoogle Scholar
  771. [A2]
    Wax, N.: Selected papers on noise and stochastic processes, Dover, reprint, 1953.Google Scholar
  772. [A3]
    Parzen, E.: Stochastic processes, Holden Day, 1962.zbMATHGoogle Scholar
  773. [A4]
    Wong, E.: Stochastic processes in information and dynamical systems, McGraw-Hill, 1971.zbMATHGoogle Scholar
  774. [1]
    Jahnke, E., Emde, F. and Lösch, F.: Tafeln höheren Funktionen, Teubner, 1966.Google Scholar
  775. [A1]
    Abramowitz, M. and Stegun, I.A.: Handbook of mathematical functions, Dover, reprint, 1972.zbMATHGoogle Scholar
  776. [1]
    Siegel, C.L.: ‘Einführung in die Theorie der Modulfunktionen n-ten Grades’, Math. Ann. 116 (1939), 617–657.MathSciNetGoogle Scholar
  777. [2]
    Siegel, C.L.: Analytic functions of several complex variables, Princeton Univ. Press, 1950.Google Scholar
  778. [3]
    Kaup, W., Matsushima, Y. and Ochiai, T.: ‘On the automorphisms and equivalences of generalized Siegel domains’, Amer. J. Math. 92 (1970), 475–498.MathSciNetzbMATHGoogle Scholar
  779. [4]
    Murakami, S.: On automorphisms of Siegel domains. Lecture notes in math., 286, Springer, 1972.zbMATHGoogle Scholar
  780. [5]
    Gindikin, S.G.: ‘Algebraic problems of the theory of functions of several complex variables’, Itogi Nauk. Mat. Anal. 1963 (1965), 81–124 (in Russian).MathSciNetGoogle Scholar
  781. [A1]
    Piatetski -Shapiro, I.I. [I.I. PyatetskiI-Shapiro]: Automorphic functions and the geometry of classical domains, Gordon & Breach, 1969 (translated from the Russian).zbMATHGoogle Scholar
  782. [1]
    Siegel, C.L.: ‘Ueber einige Anwendungen Diophantischer Approximationen’, Abh. Deutsch. Akad. Wiss. Phys.- Math. Kl., no. 1 (1929), 1–41.Google Scholar
  783. [2]
    Shidlovskixĭ, A.B.: ‘On tests for algebraic independence of the values of a class of entire functions’, Izv. Akad. Nauk SSSR Ser. Mat. 23, no. 1 (1959), 35–66 (in Russian).MathSciNetGoogle Scholar
  784. [3]
    Shidlovskiĭ, A.B.: ‘On transcendency and algebraic independence of values of E-functions related with an arbitrary number of algebraic equations in the rational function field’, Izv. Akad. Nauk SSSR Ser. Mat. 26, no. 6 (1962), 877–910 (in Russian).MathSciNetzbMATHGoogle Scholar
  785. [4]
    Shidlovskiĭ, A.B.: ‘On arithmetic properties of values of analytic functions’, Proc. Steklov Inst. Math. 132 (1972), 193–233. (Trudy Mat. Inst. Steklov. 132 (1972), 169–202)Google Scholar
  786. [5]
    Lang, S.: ‘A transcendence measure for E-functions’, Mathem. 9 (1962), 157–161.zbMATHGoogle Scholar
  787. [6]
    Fel’dman, N.I. and Shidlovskiĭ, A.B.: ‘The development and present state of the theory of transcendental numbers’, Russian Math. Surveys 22, no. 3 (1967), 1–79. (Uspekhi Mat. Nauk 22, no. 3 (1967), 1–81)zbMATHGoogle Scholar
  788. [A1]
    Shidlovskiĭ, A.B.: Transcendental numbers, de Gruyter, 1989 (translated from the Russian).zbMATHGoogle Scholar
  789. [A2]
    André, Y.: G-functions, Viehweg, 1989.zbMATHGoogle Scholar
  790. [1]
    Siegel, C.L.: ‘Ueber die Klassenzahl quadratischen Zahlkorper’, Acta Arithmetica 1 (1935), 83–86.Google Scholar
  791. [2]
    Davenport, H.: Multiplicative number theory, Springer, 1981.Google Scholar
  792. [3]
    Karatsuba, A.A.: Fundamentals of analytic number theory, Moscow, Chapt. 9 (in Russian).Google Scholar
  793. [1]
    Siegel, C.L.: ‘Ueber einige Anwendungen diophantischer Approximationen’, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. 1 (1929), 41–69.Google Scholar
  794. [2]
    Gel’fond, A.O.: The solution of equations in integers, Noordhoff, 1960.zbMATHGoogle Scholar
  795. [3]
    Davenport, H.: The higher arithmetic, Hutchinson, 1952.zbMATHGoogle Scholar
  796. [4]
    Problems of the theory of diophantine approximation, Moscow, 1974 (in Russian; translated from the English).Google Scholar
  797. [5]
    Lang, S.: Diophantine geometry, Interscience, 1962.zbMATHGoogle Scholar
  798. [A1]
    Mazur, B.: ‘On some of the mathematical contributions of Gerd Faltings’, in Proc. Internat. Congress Mathematicians Berkeley, 1986, Amer. Math. Soc., 1987, pp. 7–12.Google Scholar
  799. [A2]
    Faltings, G.: ‘Endlichkeitssätze für abelschen Varietäten über Zahlkörper’, Invent. Math. 73 (1983), 349–366.MathSciNetzbMATHGoogle Scholar
  800. [1A]
    Sierpinski, W.: ‘Sur une courbe dont tout point est un point de ramification’, C.R. Acad Sci. Paris 160 (1915), 302–305.zbMATHGoogle Scholar
  801. [1B]
    Sierpinski, W.: ‘Sur une courbe cantorienne qui contient une image binniro que et continue de toute courbe donnée’, C.R. Acad. Sci. Paris 162 (1916), 629–632.zbMATHGoogle Scholar
  802. [2]
    Aleksandrov, P.S.: Introduction to set theory and general topology, Moscow, 1977 (in Russian).Google Scholar
  803. [3]
    Kuratowski, K.: Topology, 2, Acad. Press, 1968 (translated from the French).Google Scholar
  804. [1]
    Prachar, K.: Primzahlverteilung, Springer, 1957.zbMATHGoogle Scholar
  805. [2]
    Gel’fond, A.O. and Linnik, Yu.V.: Elementary methods in the analytic theory of numbers, M.I.T., 1966 (translated from the Russian).zbMATHGoogle Scholar
  806. [3]
    Halberstam, H. and Richert, H.E.: Sieve methods, Acad. Press, 1974.zbMATHGoogle Scholar
  807. [1]
    Bol’shev, L.N. and Smirnov, N.V.: Tables of mathematical statistics, Libr. of mathematical tables, 46, Nauka, Moscow, 1983 (in Russian). Processed by L.S. Bark and E.S. Kedrova.zbMATHGoogle Scholar
  808. [2]
    Lehmann, E.L.: Testing statistical hypotheses, Wiley, 1988.Google Scholar
  809. [3]
    Waerden, B.L. van der: Mathematische Statistik, Springer, 1957.zbMATHGoogle Scholar
  810. [4]
    Smirnov, N.V. and Dunin-Barkovskiĭ, I.V.: Mathematische Statistik in der Technik, Deutsch. Verlag Wissenschaft., 1969 (translated from the Russian).Google Scholar
  811. [1]
    Davenport, W.B. and Root, W.L.: An introduction to the theory of random signals and noise, McGraw-Hill, 1970.Google Scholar
  812. [2]
    Kharkevich, A.A.: Channels with noise, Moscow, 1965 (in Russian).Google Scholar
  813. [A1]
    Wozencraft, J.M. and Jacobs, I.M.: Principles of communication engineering, Wiley, 1965.Google Scholar
  814. [A2]
    Helstrom, C.W.: Statistical theory of signal detection, Pergamon, 1968.Google Scholar
  815. [1]
    Dold, A.: Lectures on algebraic topology, Springer, 1980.zbMATHGoogle Scholar
  816. [2]
    Milnor, J. and Stasheff, J.: Characteristic classes, Princeton Univ. Press, 1974.zbMATHGoogle Scholar
  817. [1]
    Cramér, H.: Mathematical methods of statistics, Princeton Univ. Press, 1946.zbMATHGoogle Scholar
  818. [A1]
    Lehmann, E.L.: Testing statistical hypotheses, Wiley, 1969.Google Scholar
  819. [1]
    Cramér, H.: Mathematical methods of statistics, Princeton Univ. Press, 1946.zbMATHGoogle Scholar
  820. [2]
    Lehmann, E.L.: Testing statistical hypotheses, Wiley, 1959.zbMATHGoogle Scholar
  821. [3]
    Smirnov, N.V. and Dunin-Barkovskiĭ, I.V.: Mathematische Statistik in der Technik, Deutsch. Verlag Wissenschaft., 1969 (translated from the Russian).Google Scholar
  822. [4]
    Devyatov, B.I.: ‘Limits of admissibility of normal approximations to the Poisson distribution’, Theor. Probab. Appl. 14, no. 1 (1969), 170–173. (Teoriya Veroyatnost. i ee Primenen. 14, no. 1 (1969), 175–178)Google Scholar
  823. [A1]
    Young, D.M. and Gregory, R.T.: A survey of numerical mathematics, I, Dover, reprint, 1988, Chapt. 1.Google Scholar
  824. [1]
    Soler, J.-L.: Basic structures in mathematical statistics, Moscow, 1972 (in Russian; translated from the French).Google Scholar
  825. [2]
    Linnik, Yu.V.: Statistical problems with nuisance parameters, Amer. Math. Soc., 1968 (translated from the Russian).zbMATHGoogle Scholar
  826. [3]
    Barra, J.-R.: Mathematical bases of statistics, Acad. Press, 1981 (translated from the French).Google Scholar
  827. [A1]
    Lehmann, E.L.: Testing statistical hypotheses, Wiley, 1988.Google Scholar
  828. [1]
    Lehmann, E.L.: Testing statistical hypotheses, Wiley, 1988.Google Scholar
  829. [A1]
    Artin, E.: Geometric algebra, Interscience, 1957, Chapt. II.zbMATHGoogle Scholar
  830. [A2]
    Coxeter, H.S.M.: Introduction to geometry, Wiley, 1969, pp. 72–76.zbMATHGoogle Scholar
  831. [A3]
    Berger, M.: Geometry, I, Springer, 1987 (translated from the French).Google Scholar
  832. [A4]
    Besse, A.: Einstein manifolds, Springer, 1987.zbMATHGoogle Scholar
  833. [1]
    Lehmann, E.L.: Testing statistical hypotheses, Wiley, 1988.Google Scholar
  834. [2]
    Waerden, B.L. van der: Mathematische Statistik, Springer, 1957.zbMATHGoogle Scholar
  835. [3]
    Neyman, J. and Pearson, E.S.: ‘On the problem of the most efficient tests of statistical hypotheses’, Philos. Trans. Roy. Soc. London Ser. A 231 (1933), 289–337.Google Scholar
  836. [4]
    Lehmann, E.L. and Scheffe, H.: ‘Completeness, similar regions, and unbiased estimation I’, Sankhyā 10 (1950), 305–340.MathSciNetzbMATHGoogle Scholar
  837. [5]
    Lehmann, E.L. and Scheffe, H.: ‘Completeness, similar regions, and unbiased estimation II’, Sankhyā 15 (1955), 219–236.MathSciNetzbMATHGoogle Scholar
  838. [1]
    Bridgman, P.W.: Dimensional analysis, Yale Univ. Press, 1937.Google Scholar
  839. [2]
    Sedov, L.I.: Similarity and dimensional methods in mechanics, Infosearch, 1959 (translated from the Russian).zbMATHGoogle Scholar
  840. [A1]
    Huntley, H.E.: Dimensional analysis, Dover, reprint, 1967.Google Scholar
  841. [A2]
    Birkhoff, G.: Hydrodynamics, Princeton Univ. Press, 1960, Chapt. IV.zbMATHGoogle Scholar
  842. [A1]
    Kuratowski, K.: Introduction to set theory and topology, Pergamon, 1961, Chapt. III, §3.Google Scholar
  843. [1]
    Carter, R.W.: Simple groups of Lie type, Wiley (Interscience), 1972.zbMATHGoogle Scholar
  844. [2]
    Gorenstein, D.: Finite simple groups. An introduction to their classification, Plenum, 1982.zbMATHGoogle Scholar
  845. [3]
    Huppert, B.: Endliche Gruppen, 1, Springer, 1967.zbMATHGoogle Scholar
  846. [4]
    Blackburn, N. and Huppert, B.: Finite groups, 2–3, Springer, 1984Google Scholar
  847. [A1]
    Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A. and Wilson, R.A.: Atlas of finite groups, Clarendon Press, 1985.zbMATHGoogle Scholar
  848. [A2]
    Kleidman, P.B. and Liebeck, M.W.: ‘A survey of the maximal subgroups of the finite simple groups’, Geom. Dedicata 25 (1988), 375–389.MathSciNetzbMATHGoogle Scholar
  849. [A3]
    Kleidman, P.B. and Liebeck, M.W.: The subgroup structure of the finite classical groups, Cambridge Univ. Press, 1990.zbMATHGoogle Scholar
  850. [A4]
    Gorenstein, D.: The classification of finite simple groups, 1. Groups of noncharacteristic 2 type, Plenum, 1983.zbMATHGoogle Scholar
  851. [A1]
    Humphreys, J.E.: Linear algebraic groups, Springer, 1975.zbMATHGoogle Scholar
  852. [A2]
    Pontryagin, L.S.: Topological groups, Princeton Univ. Press, 1939.zbMATHGoogle Scholar
  853. [A3]
    Mackey, G.W.: Unitary group representations, Benjamin, 1978.zbMATHGoogle Scholar
  854. [A4]
    Freudenthal, H. and Vries, H. de: Linear Lie groups, Acad. Press, 1969.zbMATHGoogle Scholar
  855. [A5]
    Weinstein, M.: Examples of groups, Polygonal Publ. House, 1977, Examples 6.14; 6.15.zbMATHGoogle Scholar
  856. [A6]
    Robinson, D.J.S.: Finiteness conditions and generalized soluble groups, Springer, 1972, Part 1; Chapt. 1.Google Scholar
  857. [A1]
    Rham, G. de: Torsion et type simple d’homotopie, Lecture notes in math., 48, Springer, 1967.zbMATHGoogle Scholar
  858. [A1]
    Mood, A.M. and Graybill, F.A.: Introduction to the theory of statistics, McGraw-Hill, 1963, §12.2.Google Scholar
  859. [1]
    Faddeev, D.K. and Faddeeva, V.N.: Computational methods of linear algebra, Freeman, 1963 (translated from the Russian).Google Scholar
  860. [2]
    Berezin, I.S. and Zhidkov, N.P.: Computing methods, Pergamon, 1973 (translated from the Russian).Google Scholar
  861. [3]
    Ortega, J. and Rheinboldt, W.: Iterative solution of nonlinear equations in several variables, Acad. Press, 1970.zbMATHGoogle Scholar
  862. [4]
    Samarskiĭ, A.A. and Nikolaev, E.S.: Numerical methods for grid equations, 1–2, Birkhäuser, 1989 (translated from the Russian).zbMATHGoogle Scholar
  863. [1]
    Günter, N.M.: Potential theory and its applications to basic problems of mathematical physics, F. Ungar, New-York, 1967 (translated from the Russian).zbMATHGoogle Scholar
  864. [2]
    Miranda, C.: Partial differential equations of elliptic type, Springer, 1970 (translated from the Italian).zbMATHGoogle Scholar
  865. [3]
    Tikhonov, A.N. and Samarskiĭ, A.A.: Equations of mathematical physics, Pergamon, 1963 (translated from the Russian).zbMATHGoogle Scholar
  866. [4]
    Smirnov, V.I.: A course of higher mathematics, 4, Addison-Wesley, 1964 (translated from the Russian).Google Scholar
  867. [5]
    Friedman, A.: Partial differential equations of parabolic type, Prentice-Hall, 1964.zbMATHGoogle Scholar
  868. [6]
    Bitsadze, A.V.: Boundary value problems for second-order elliptic equations, North-Holland, 1968 (translated from the Russian).zbMATHGoogle Scholar
  869. [A1]
    Král, J.: Integral operators in potential theory, Springer, 1980.zbMATHGoogle Scholar
  870. [1]
    Bokut’, L.A.: Associative rings, 1–2, Novosibirsk, 1977–1981 (in Russian).zbMATHGoogle Scholar
  871. [2]
    Jacobson, N.: Structure of rings, Amer. Math. Soc., 1956.zbMATHGoogle Scholar
  872. [3]
    Zalesskiĭ, A.E. and Neroslavskiĭ, O.: ‘There exist simple Noetherian rings with zero division but without idempotents’, Comm. in Algebra 5, no. 3 (1977), 231–244 (in Russian). English abstract.Google Scholar
  873. [4]
    Faith, C.: Algebra, 1–2, Springer, 1973–1976.zbMATHGoogle Scholar
  874. [5]
    Cozzens, J. and Faith, C.: Simple Noetherian rings, Cambridge Univ. Press, 1975.zbMATHGoogle Scholar
  875. [1]
    Clifford, A.H. and Preston, G.B.: The algebraic theory of semigroups, 1–2, Amer. Math. Soc., 1961–1967.zbMATHGoogle Scholar
  876. [2]
    Lyapin, E.S.: Semigroups, Amer. Math. Soc., 1974 (translated from the Russian).zbMATHGoogle Scholar
  877. [3]
    Bokut’, L.A.: ‘Some embedding theorems for rings and semigroups’. Sibirsk. Mat. Zh. 4, no. 3 (1963), 500–518 (in Russian).MathSciNetzbMATHGoogle Scholar
  878. [4]
    Shutov, E.G.: ‘Embeddings of semigroups in simple and complete semigroups’. Mat. Sb. 62, no. 4 (1963), 496–511 (in Russian).MathSciNetGoogle Scholar
  879. [5]
    Klimov, V.N.: ‘Embedding of semigroups in factorizable semigroups’, Sib. Math. J. 14, no. 5 (1973), 715–722. (Sibirsk. Mat. Zh. 14, no. 5 (1973), 1025–1036)MathSciNetGoogle Scholar
  880. [6]
    Baer, R. and Levi, F.: ‘Vollständige irreduzibele Systeme von Gruppenaxiomen’, Sitzungsber. Heidelb. Akad. Wissenschaft. Math.-Nat. Kl. 2 (1932), 3–12.Google Scholar
  881. [7]
    Teissier, M.: ‘Sur les demi-groupes admettant l’existence du quotient d’un cote’, C.R. Acad. Sci. Paris 236, no. 11 (1953), 1120–1122.MathSciNetzbMATHGoogle Scholar
  882. [8]
    Munn, W.D.: ‘Some recent results on the structure of inverse semigroups’, in K.W. Folley (ed.): Semigroups, Acad. Press, 1969, pp. 107–123.Google Scholar
  883. [9]
    Howie, J.: An introduction to semigroup theory, Acad. Press, 1976.zbMATHGoogle Scholar
  884. [10]
    Pastijn, F.: ‘Embedding semigroups in semibands’, Semigroup Forum 14, no. 3 (1977), 247–263.MathSciNetzbMATHGoogle Scholar
  885. [11]
    Byleen, K., Meakin, J. and Pastijn, F.: ‘The fundamental four-spiral semigroup’, J. of Algebra 54 (1978), 6–26.MathSciNetzbMATHGoogle Scholar
  886. [1]
    Uspenskiĭ, V.A.: Leçons sur les fonctions calculables, Hermann, 1966 (translated from the Russian).Google Scholar
  887. [2]
    Mal’tsev, A.I.: Algorithms and recursive functions, Wolters-Noordhoff, 1970 (translated from the Russian).zbMATHGoogle Scholar
  888. [3]
    Rogers, jr., H.: Theory of recursive functions and effective computability, McGraw-Hill, 1967.zbMATHGoogle Scholar
  889. [A1]
    Grünbaum, B.: Convex polytopes, Wiley, 1967.zbMATHGoogle Scholar
  890. [A2]
    McMullen, P. and Shephard, G.C.: Convex polytopes and the upper bound conjecture, Cambridge Univ. Press, 1971.zbMATHGoogle Scholar
  891. [1]
    Yudin, D.B. and Gol’shteĭn, E.G.: Linear programming, Israel Progr. Sci. Transi., 1965 (translated from the Russian).Google Scholar
  892. [2]
    Danzig, J.: Linear programming and extensions, Princeton Univ. Press, 1963.Google Scholar
  893. [3]
    Ashmanov, S.A.: Linear programming, Moscow, 1981 (in Russian).zbMATHGoogle Scholar
  894. [A1]
    Klee, V. and Minty, G.: ‘How good is the simplex algorithm?’, in O. Shisha (ed.): Inequalities, Vol. III, Acad. Press, 1972, pp. 159–172.Google Scholar
  895. [A2]
    Borgwardt, K.H.: The average number of pivot steps required by the simplex-method is polynomial’, Z. Oper. Res. 26 (1982), 157–177.MathSciNetzbMATHGoogle Scholar
  896. [A3]
    Shamir, R.: ‘The efficiency of the simplex method: a survey’, Management Science 33, no. 3 (1987), 301–334.MathSciNetzbMATHGoogle Scholar
  897. [A4]
    Khachiyan, L.G.: ‘A polynomial algorithm in linear programming’, Soviet Math. Dokl. 20, no. 1 (1979), 191–194. (Dokl. Akad. Nauk SSSR 244 (1979), 1093–1096)zbMATHGoogle Scholar
  898. [A5]
    Karmarkar, N.: ‘A new polynomial-time algorithm for linear programming’, Combinatorica 4, no. 4 (1984), 373–395.MathSciNetzbMATHGoogle Scholar
  899. [A6]
    Heesterman, A.R.G.: Matrices and simplex algorithms, Reidel, 1983.zbMATHGoogle Scholar
  900. [A7]
    Zionts, S.: Linear and integer programming, Prentice-Hall, 1974.Google Scholar
  901. [A8]
    Todd, M.J.: ‘Recent developments and new directions in linear programming’, in M. Iri and K. Tanabe (eds.): Mathematical Programming, Kluwer, 1989, pp. 109–157.Google Scholar
  902. [1]
    Spanier, E.H.: Algebraic topology, McGraw-Hill, 1966.zbMATHGoogle Scholar
  903. [2]
    Hilton, P.J. and Wylie, S.: Homology theory. An introduction to algebraic topology, Cambridge Univ. Press, 1960.zbMATHGoogle Scholar
  904. [3]
    Whitehead, J.H.C.: ‘Simplicial spaces, nuclei and M-groups’, Proc. London Math. Soc. 45 (1939), 243–327.Google Scholar
  905. [A1]
    Maunder, C.R.F.: Algebraic topology, v. Nostrand, 1972.Google Scholar
  906. [A2]
    Lefshetz, S.: Topology, Chelsea, reprint, 1956.Google Scholar
  907. [A3]
    Lamotke, K.: Semisimpliziale algebraische Topologie, Springer, 1968.zbMATHGoogle Scholar
  908. [1]
    Gabriel, P. and Zisman, M.: Calculus of fractions and homotopy theory, Springer, 1967.zbMATHGoogle Scholar
  909. [2]
    May, J.P.: Simplicial objects in algebraic topology, v. Nostrand, 1967.Google Scholar
  910. [3]
    Lamotke, K.: Semisimpliziale algebraische Topologie, Springer, 1968.zbMATHGoogle Scholar
  911. [1]
    Gabriel, P. and Zisman, M.: Calculus of fractions and homotopy theory, Springer, 1967.zbMATHGoogle Scholar
  912. [2]
    May, J.P.: Simplicial objects in algebraic topology, v. Nostrand, 1967.Google Scholar
  913. [3]
    Lamotke, K.: Semisimpliziale algebraische Topologie, Springer, 1968.zbMATHGoogle Scholar
  914. [4]
    Kan, D.M.: ‘On c.s.s. complexes’, Amer. J. Math. 79 (1957), 449–476.MathSciNetzbMATHGoogle Scholar
  915. [5]
    Quillen, D.G.: ‘The geometric realization of a Kan fibration is a Serre fibration’, Proc. Amer. Math. Soc. 19 (1968), 1499–1500.MathSciNetzbMATHGoogle Scholar
  916. [6]
    Brown, E.H.: ‘Finite computability of Postnikov complexes’, Ann. of Math. (2) 65 (1957), 1–20.MathSciNetzbMATHGoogle Scholar
  917. [7]
    Kan, D.M.: ‘A combinatorial definition of homotopy groups’, Ann. of Math. (2) 67 (1958), 282–312.MathSciNetzbMATHGoogle Scholar
  918. [8]
    Kan, D.M.: ‘On homotopy theory and c.s.s. groups’, Ann. of Math. (2) 68 (1958), 38–53.MathSciNetzbMATHGoogle Scholar
  919. [9]
    Kan, D.M.: ‘An axiomatization of the homotopy groups’, Illinois J. Math. 2 (1958), 548–566.MathSciNetzbMATHGoogle Scholar
  920. [10]
    Kan, D.M.: ‘A relation between CW-complexes and free c.s.s. groups’, Amer. J. Math. 81 (1959), 512–528.MathSciNetzbMATHGoogle Scholar
  921. [A1]
    Spanier, E.H.: Algebraic topology, McGraw-Hill, 1966, p. 113ff.zbMATHGoogle Scholar
  922. [A2]
    Gray, B.: Homotopy theory, Acad. Press, 1975, §12.zbMATHGoogle Scholar
  923. [A1]
    Jänich, K.: Topology, Springer, 1984, p. 148ff.zbMATHGoogle Scholar
  924. [A2]
    Nehari, Z.: Conformai mapping, Dover, reprint, 1975, p. 2.Google Scholar
  925. [A1]
    Hochschild, G.: The structure of Lie groups, Holden-Day, 1965.zbMATHGoogle Scholar
  926. [A2]
    Hermann, R.: Lie groups for physicists, Benjamin, 1966.zbMATHGoogle Scholar
  927. [A3]
    Humphreys, J.E.: Linear algebraic groups, Springer, 1975.zbMATHGoogle Scholar
  928. [A1]
    Courant, R.: Vorlesungen über Differential- und Integralrechnung, 1, Springer, 1971.zbMATHGoogle Scholar
  929. [A2]
    Young, D.M. and Gregory, R.T.: A survey of numerical mathematics, Dover, reprint, 1988, §7.4.Google Scholar
  930. [A1]
    Altshiller-Court, N.: College geometry, New York, 1952.zbMATHGoogle Scholar
  931. [A2]
    Coxeter, H.S.M.: Introduction to geometry, Wiley, 1989.Google Scholar
  932. [A3]
    Gillispie, C.G.: Dictionary of scientific biography 14 (1976), 140.Google Scholar
  933. [A4]
    Berger, M.: Geometry, Springer, 1987 (translated from the French).Google Scholar
  934. [A5]
    Coolidge, J.: A treatise on the circle and the sphere, Chelsea, reprint, 1971.zbMATHGoogle Scholar
  935. [1]
    Dahl, O.J. and Nigard, K.: ‘SIMULA — a language for programming and describing sets with discrete events’, Algoritm. i Algoritm. Yazik. (1967), 3–72.Google Scholar
  936. [2]
    Dahl, O.J., Murhaug, B. and Nigard, K.: SIMULA-67, a universal programming language, Moscow, 1969 (in Russian; translated from the English).Google Scholar
  937. [A1]
    Abramowitz, M. and Stegun, J.A.: Handbook of mathemati cal functions, Dover, reprint, 1972, §4.3.Google Scholar
  938. [1]
    Hurwitz, A. and Courant, R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, 2, Springer, 1964, Chapt. 3.zbMATHGoogle Scholar
  939. [1]
    Ablowitz, M., et al.: ‘Method for solving the sine-Gordon equation’, Phys. Rev. Letters 30 (1973), 1262–1264.MathSciNetGoogle Scholar
  940. [2]
    Takhtadzhyan, L.A. and Faddeev, L.D.: ‘Essentially nonlinear one-dimensional model of classical field theory’, Teoret. Mat. Fiz. 21, no. 2 (1974), 160–174 (in Russian).Google Scholar
  941. [3]
    Tahtadžjan, L.A. [L.A. Takhtadzhyan] and Faddeev, L.D.: ‘The Hamiltonian system connected with the equation μ ξη + sin u=0’, Proc. Steklov Inst. Math. 142 (1979), 277–289. (Trudy Mat. Inst. Akad. Nauk SSSR 142 (1976), 254–266)Google Scholar
  942. [4]
    Kozel, V.O. and Kotlyarov, V.P.: ‘Almost-periodic solutions of the equation u tt ‒ u xx + sin u=0’, Dokl. Akad. Nauk UkrSSR Ser. A 10 (1976), 878–881; 959 (in Russian). English abstract.Google Scholar
  943. [5]
    Korepin, V.E. and Faddeev, L.D.: ‘Quantization of solitons’, Teoret. Mat. Fiz. 25, no. 2 (1975), 147–163 (in Russian). English abstract.MathSciNetGoogle Scholar
  944. [6]
    Bianchi, L.: Lezioni di geometria differenziale, 1–2, Zanichelli, Bologna, 1923–1927.zbMATHGoogle Scholar
  945. [7]
    Finikov, S.P.: Deformation over a principal base and related problems in geometry, Moscow-Leningrad, 1937 (in Russian).Google Scholar
  946. [8]
    Pelinovskiĭ, E.N.: ‘Some exact methods in nonlinear wave theory’, Izv. Vuzov. Radiofizika 19, no. 5–6 (1976), 883–901 (in Russian).Google Scholar
  947. [A1]
    Ablowitz, M.J. and Segur, H.: Solitons and the inverse scattering transform, SIAM, 1981.zbMATHGoogle Scholar
  948. [A2]
    Faddeev, L.D. and Takhtadzhyan, L.A.: Hamiltonian methods in the theory of solitons, Springer, 1967 (translated from the Russian).Google Scholar
  949. [A3]
    Newell, A.C.: Solitons in mathematics and physics, SIAM, 1985.Google Scholar
  950. [A4]
    Drinfel’d, V.G. and Sokolov, V.V.: ‘Lie algebras and equations of Korteweg-de Vries type’, J. Soviet Math. 30, no. 2 (1985), 1975–2036. (Sov. Probl. Mat. 24 (1984), 81–180)zbMATHGoogle Scholar
  951. [A5]
    Leznov, A.N.: ‘On complete integrability of a nonlinear system of partial differential equations in two-dimensional space’, Teoret. Mat. Fiz. 42, no. 3 (1980), 343–349 (in Russian).MathSciNetzbMATHGoogle Scholar
  952. [A1]
    Coxeter, H.S.M. and Greitzer, S.L.: Geometry revisited, Math. Assoc. Amer., 1975.Google Scholar
  953. [1]
    Prokhorov, Yu.V. and Rozanov, Yu.A.: Probability theory, Springer, 1969 (translated from the Russian).zbMATHGoogle Scholar
  954. [2]
    Feller, W.: An introduction to probability theory and its applications, 2, Wiley, 1971.zbMATHGoogle Scholar
  955. [1]
    Bohl, P.: ‘Ueber Differentialgleichungen’, J. Reine Angew. Math. 144 (1913), 284–318.Google Scholar
  956. [2]
    Persidskiĭ, K.: ‘First approximation kinetic stability’, Mat. Sb. 40, no. 3 (1933), 284–293 (in Russian).zbMATHGoogle Scholar
  957. [3]
    Bylov, B.F., Vinograd, R.E., Grobman, D.M. and Nemytskiĭ, V.V.: The theory of Lyapunov exponents and its applications to problems of stability, Moscow, 1966 (in Russian).Google Scholar
  958. [4]
    Daletskiĭ, Yu.L. and Kreĭn, M.G.: Stability of solutions of differential equations in Banach space, Amer. Math. Soc., 1974 (translated from the Russian).Google Scholar
  959. [5]
    Izobov, N.A.: ‘Linear systems of ordinary differential equations’, J. Soviet Math. 5, no. 1 (1974), 46–96. (Itogi Nauk. i Tekhn. Mat. Anal. 12 (1974), 71–146)MathSciNetGoogle Scholar
  960. [1]
    Lebesgue, H.: Leçons sur l’intégration et la récherche des fonctions primitives, Gauthier- Villars, 1928.zbMATHGoogle Scholar
  961. [2]
    Natanson, I.P.: Theory of functions of a real variable, 1–2, F. Ungar, 1955–1961 (translated from the Russian).Google Scholar
  962. [3]
    Halmos, P.: Measure theory, v. Nostrand, 1950.zbMATHGoogle Scholar
  963. [A1]
    Hewitt, E. and Stromberg, K.: Real and abstract analysis, Springer, 1965.zbMATHGoogle Scholar
  964. [A2]
    Stromberg, K.: Introduction to classical real analysis, Wadsworth, 1981.Google Scholar
  965. [1]
    Dold, A.: Lectures on algebraic topology, Springer, 1972.zbMATHGoogle Scholar
  966. [2]
    Massey, W.S.: Homology and cohomology theory, M. Dekker, 1978, Chapts. 8; 9.zbMATHGoogle Scholar
  967. [3]
    Sklyarenko, E.G.: ‘On homology theory associated with the Aleksandrov — Čech cohomology’, Russian Math. Surveys 34, no. 6 (1979), 103–137. (Uspekhi Mat. Nauk. 34, no. 6 (1979), 90–118)MathSciNetzbMATHGoogle Scholar
  968. [4]
    Massey, W.S.: Singular homology theory, Springer, 1980.zbMATHGoogle Scholar
  969. [5]
    Sklyarenko, E.G.: Homology and cohomology of general spaces, Springer, Forthcoming (translated from the Russian).Google Scholar
  970. [A1]
    Switzer, R.M.: Algebraic topology — homotopy and homology, Springer, 1975, Chapt. 10.zbMATHGoogle Scholar
  971. [A2]
    Spanier, E.H.: Algebraic topology, McGraw-Hill, 1966, Sects. 4.4; 5.4.zbMATHGoogle Scholar
  972. [1]
    Lebesgue, H.: ‘Sur les intégrales singulières’, Ann. Fac. Sci. Univ. Toulouse 1 (1909), 25–117.MathSciNetGoogle Scholar
  973. [2]
    Faddeev, D.K.: ‘On the representation of mean-square integrable functions by singular integrals’, Mat. Sb. 1 (1936), 351–368 (in Russian). French abstract.zbMATHGoogle Scholar
  974. [3]
    Korovkin, P.P.: Linear operators and approximation theory, Hindustan Publ. Comp., 1960 (translated from the Russian).Google Scholar
  975. [4]
    Natanson, I.P.: Functions of a real variable, 1–2, F. Ungar, 1955–1962 (translated from the Russian).Google Scholar
  976. [5]
    Alexits, G. [G. Aleksich]: Convergence problems of orthogonal series, Pergamon, 1961 (translated from the Russian).zbMATHGoogle Scholar
  977. [6]
    Efimov, A.V.: ‘On linear summation methods for Fourier series’, Izv. Akad. Nauk. SSSR Ser. Mat. 24, no. 5 (1960), 743–756 (in Russian).MathSciNetzbMATHGoogle Scholar
  978. [7]
    Telyakovskiĭ, S.A.: ‘Integrability conditions for trigonometric series and their application to the study of linear summation methods for Fourier series’, Izv. Akad. Nauk. SSSR Ser. Mat. 28, no. 6 (1964), 1209–1236 (in Russian).MathSciNetGoogle Scholar
  979. [A1]
    Stein, E.M.: Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1979.Google Scholar
  980. [1]
    Muskhelishvili, N.I.: Singular integral equations, Wolters-Noordhoff, 1972 (translated from the Russian).Google Scholar
  981. [2]
    Gakhov, F.D.: Boundary value problems, Pergamon, 1966 (translated from the Russian).zbMATHGoogle Scholar
  982. [3]
    Vekua, N.P.: Systems of singular integral equations and some boundary value problems. Moscow, 1970 (in Russian).Google Scholar
  983. [4]
    Khvedelidze, B.V.: ‘Linear discontinuous boundary problems in the theory of functions, singular integral equations and some applications’, Trudy Tbilis. Mat. Inst. Akad. Nauk. GruzSSR 23 (1956), 3–158 (in Russian).Google Scholar
  984. [5]
    Danilyuk, I.I.: Nonregular boundary value problems on the plane, Moscow, 1975 (in Russian).Google Scholar
  985. [6]
    Gohberg, I. [I.Ts. Gokhberg] and Krupnik, N.: Einführung in die Theorie der eindimensionalen singulären Integralopera-toren, Birkhäuser, 1979 (translated from the Russian).Google Scholar
  986. [7]
    Mlkhlin, S.G.: Multidimensional singular integrals and integral equations, Pergamon, 1965 (translated from the Russian).Google Scholar
  987. [8]
    Bitsadze, A. V.: Boundary value problems for second-order elliptic equations, North-Holland, 1968 (translated from the Russian).zbMATHGoogle Scholar
  988. [9]
    Noether, F.: ‘Ueber eine Klasse singulärer Integralgleichungen’, Math. Ann. 82 (1921), 42–63.MathSciNetGoogle Scholar
  989. [10]
    Carleman, T.: ‘Sur le résolution des certaines équations intégrales’, Arkiv. Mat. Astron. Fys. 16, no. 26 (1922), 1–19.Google Scholar
  990. [11]
    Prössdorf, S.: Einige Klassen singulärer Gleichungen, Birkhäuser, 1974.Google Scholar
  991. [A1]
    Bart, H., Gohberg, I. and Kaashoek, M.A.: Minimal factorization of matrix and operation functions, Birkhäuser, 1979.Google Scholar
  992. [A2]
    Clancey, K. and Gohberg, I.: Factorization of matrix functions and singular integral operators, Birkhäuser, 1981.zbMATHGoogle Scholar
  993. [1]
    Markushevich, A.I.: The theory of analytic functions, 1–2, Chelsea, 1977 (translated from the Russian).zbMATHGoogle Scholar
  994. [2]
    Shabat, B.V.: Introduction to complex analysis, 1–2, Moscow, 1976 (in Russian).Google Scholar
  995. [3]
    Stoĭlov, S.: The theory of functions of a complex variable, 1–2, Moscow, 1962 (in Russian; translated from the Rumanian).Google Scholar
  996. [4]
    Hurwitz, A. and Courant, R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, 1, Springer, 1964.zbMATHGoogle Scholar
  997. [5]
    Bieberbach, L.: Analytische Fortsetzung, Springer, 1955.zbMATHGoogle Scholar
  998. [6]
    Bieberbach, L.: Lehrbuch der Funktionentheorie, 1–2, Chelsea, reprint, 1945.zbMATHGoogle Scholar
  999. [7]
    Vladimirov, V.S.: Methods of the theory of functions of several complex variables, M.I.T, 1966 (translated from the Russian).Google Scholar
  1000. [8]
    Fuks, B.A.: Introduction to the theory of analytic functions of several complex variables, Amer. Math. Soc, 1965 (translated from the Russian).Google Scholar
  1001. [9]
    Gunning, R.C. and Rossi, H.: Analytic functions of several complex variables, Prentice-Hall, 1965.zbMATHGoogle Scholar
  1002. [10]
    Behnke, H. and Thullen, P.: Theorie der Funktionen mehrerer komplexer Veränderlichen, Springer, 1970.zbMATHGoogle Scholar
  1003. [A1]
    Hörmander, L.: An introduction to complex analysis in several variables, North-Holland, 1973.zbMATHGoogle Scholar
  1004. [A2]
    Cohn, H.: Conformai mapping on Riemann surfaces, Dover, reprint, 1980.Google Scholar
  1005. [A3]
    Conway, J.B.: Functions of one complex variable, Springer, 1978.Google Scholar
  1006. [A4]
    Krantz, S.G.: Function theory of several complex variables, Wiley, 1982.zbMATHGoogle Scholar
  1007. [A5]
    Range, R.M.: Holomorphic functions and integral representation in several complex variables, Springer, 1986.Google Scholar
  1008. [A6]
    Chirka, E.M.: Complex analytic sets, Kluwer, 1989 (translated from the Russian).zbMATHGoogle Scholar
  1009. [A7]
    Narasimhan, R.: Several complex variables, Univ. Chicago Press, 1971.zbMATHGoogle Scholar
  1010. [A8]
    Remmert, R.: Funktionentheorie, I, Springer, 1984.zbMATHGoogle Scholar
  1011. [A9]
    Kaupp, L. and Kaupp, B.: Holomorphic functions of several variables, de Gruyter, 1983 (translated from the German).Google Scholar
  1012. [1]
    Artin, M.: ‘On isolated rational singularities of surfaces’, Amer. J. Math. 88 (1966), 129–136.MathSciNetzbMATHGoogle Scholar
  1013. [2]
    Grothendieck, A., et al. (eds.): Groupes de monodromie en géométrie algébrique (SGA 7), Lecture notes in math., 288, Springer, 1972.zbMATHGoogle Scholar
  1014. [3]
    Kempf, G.: ‘On the collapsing of homogeneous bundles’, Invent. Math. 37 (1976), 229–239.MathSciNetzbMATHGoogle Scholar
  1015. [4]
    Schlessinger, M.: ‘Rigidity of quotient singularities’, Invent. Math. 14 (1971), 17–26.MathSciNetzbMATHGoogle Scholar
  1016. [5]
    Pinkham, H.: ‘Resolution simultanée de points doubles rationnels’, in M. Demazure, et al. (ed.): Séminaire sur les Singularités des Surfaces, Lecture notes in math., Vol. 777, Springer, 1980, pp. 179–203.Google Scholar
  1017. [6]
    Kempf, G., et al. (eds.): Toroidal embeddings, Lecture notes in math., 339, Springer, 1973.zbMATHGoogle Scholar
  1018. [7]
    Yau, S.S-T.: ‘On maximally elliptic singularities’, Trans. Amer. Math. Soc. 257 (1980), 269–329.MathSciNetzbMATHGoogle Scholar
  1019. [8]
    Zariski, O.: ‘Studies in equisingularity III. Saturation of local rings and equisingularity’, Amer. J. Math. 90 (1968), 961–1023.MathSciNetzbMATHGoogle Scholar
  1020. [9]
    Arnol’d, V.I.: ‘Critical points of smooth functions and their normal forms’, Russian Math. Surveys 30, no. 5 (1975), 1–75. (Uspekhi Mat. Nauk 30, no. 5 (1975), 3–65)zbMATHGoogle Scholar
  1021. [10]
    Golubitskiï, M. and Guillemin, V.: Stable mappings and their singularities, Springer, 1973.Google Scholar
  1022. [11]
    Griffiths, Ph. and Harris, J.: Principles of algebraic geometry, 1–2, Wiley, 1978.zbMATHGoogle Scholar
  1023. [12]
    Milnor, J.: Singular points of complex hypersurfaces, Princeton Univ. Press, 1968.zbMATHGoogle Scholar
  1024. [13]
    Hironaka, H.: ‘Resolution of singularities of an algebraic variety over a field of characteristic zero’ I, IF, Ann. of Math. 79 (1964), 109–326.MathSciNetzbMATHGoogle Scholar
  1025. [A1]
    Arnol’d, V.I.: ‘Critical points of smooth functions’, in Proc. Internat. Congress Mathematicians Vancouver, 1974, Vol. 1, Canad. Math. Congress, 1975, pp. 19–39.Google Scholar
  1026. [A2]
    Brieskorn, E.: ‘Singular elements of semisimple algebraic groups’, in Proc. Internat. Congress Mathematicians Nice, 1970, Vol. 2, Gauthier-Villars, 1971, pp. 279–284.Google Scholar
  1027. [A3]
    Brieskorn, E.: ‘Singularitäten’, Jahresber. Deutsch. Math. Verein. 78 (1976), 93–112.MathSciNetzbMATHGoogle Scholar
  1028. [A4]
    Guseĭn-Zade, S.M.: ‘Dynkin diagrams for singularities of functions of two variables’, Funct. Anal. Appl. 8, no. 4 (1974), 295–300.Google Scholar
  1029. [A4a]
    Guseĭn-Zade, S.M.: (Funkts. Anal, i Prilozh. 8, no. 4 (1974), 23–30)Google Scholar
  1030. [A5]
    Husein-Zade, S.M. [S.M. GuseIn-Zade]: ‘The monodromy groups of isolated singularities of hypersurfaces’, Russian Math. Surveys 32, no. 2 (1977), 23–65. (Uspekhi Mat. Nauk 32, no. 2 (1977))zbMATHGoogle Scholar
  1031. [A6]
    Haze Winkel, M., Hesselink, W., Siersma, D. and Veldkamp, F.D.: ‘The ubiquity of Coxeter — Dynkin diagrams’, Nieuw Archief voor Wiskunde 25 (1977), 257–307.Google Scholar
  1032. [A7]
    Gawedzki, K.: ‘Conformai field theory’, in Sern. Bourbaki 1988/89, Vol. Exp. 704, Soc. Math. France, 1989, pp. 95–126.Google Scholar
  1033. [A8]
    Brieskorn, E. and Knörrer, H.: Plane algebraic curves, Birkhäuser, 1986 (translated from the German).zbMATHGoogle Scholar
  1034. [A9]
    Serre, J.-P.: Groupes algébriques et corps de classes, Hermann, 1959, p. 65.zbMATHGoogle Scholar
  1035. [A10]
    Slodowy, P.: Simple singularities and simple algebraic groups, Springer, 1980.zbMATHGoogle Scholar
  1036. [A11]
    Arnol’d, V.I.: Singularities of caustics and wave fronts, Kluwer, 1990.zbMATHGoogle Scholar
  1037. [1A]
    Poincaré, H.: ‘Mémoire sur les courbes définies par une équation différentielle’, J. de Math. 7 (1881), 375–422.zbMATHGoogle Scholar
  1038. [1B]
    Poincaré, H.: ‘Mémoire sur les courbes définies par une équation différentielle’, J. de Math. 8 (1882), 251–296.zbMATHGoogle Scholar
  1039. [1C]
    Poincaré, H.: ‘Mémoire sur les courbes définies par une équation différentielle’, J. de Math. 1 (1885), 167–244.zbMATHGoogle Scholar
  1040. [1D]
    Poincaré, H.: ‘Mémoire sur les courbes définies par une équation différentielle’, J. de Math. 2 (1886), 151–217.zbMATHGoogle Scholar
  1041. [2]
    Lyapunov, A.M.: Stability of motion, Acad. Press, 1966 (translated from the Russian).zbMATH