Advertisement

R

  • M. Hazewinkel
Chapter
  • 576 Downloads
Part of the Encyclopaedia of Mathematics book series (ENMA, volume 8)

References

  1. [A1]
    Fife, P.C.: Mathematical aspects of reacting and diffusing systems, Lecture notes in biomathematics, 28, Springer, 1979.CrossRefzbMATHGoogle Scholar
  2. [A2]
    Henry, D.: Geometric theory of semilinear parabolic equations, Lecture notes in mathematics, 840, Springer, 1981.zbMATHGoogle Scholar
  3. [A3]
    Smoller, J.: Shock waves and reaction-diffusion equations, Springer, 1983.CrossRefzbMATHGoogle Scholar
  4. [A4]
    Conley, C.: Isolated invariant sets and the Morse index, Amer. Math. Soc, 1978.zbMATHGoogle Scholar
  5. [A5]
    Kolmogorov, A.N., Petrovskiῐ, I.G. and Piskunov, N.S.: ‘A study of the diffusion equation with increase in the quantity of matter, and its application to a biological problem’, Byull. Moskov. Gos. Univ. 17 (1937), 1–72 (in Russian).Google Scholar
  6. [A6]
    Aronson, D.G. and Weinberger, H.F.: ‘Multidimensional nonlinear diffusion arising in population genetics’, Adv. in Math. 30(1978), 33–76.CrossRefMathSciNetzbMATHGoogle Scholar
  7. [A7]
    Kanel’, Ya.I.: ‘On the stability of solutions of the Cauchy problem for the equations arising in combustion theory’, Mat. Sb. 59 (1962), 245–288 (in Russian).MathSciNetGoogle Scholar
  8. [A8]
    Fife, P.C. and McLeod, J.B.: ‘The approach of solutions of nonlinear diffusion equations to travelling front solutions’, Arch. Rational Mech. Anal. 65 (1977), 335–361.CrossRefMathSciNetzbMATHGoogle Scholar
  9. [A9]
    Fife, P.C.: Dynamics of internal layers and diffusive interfaces, CBMS-NSF Reg. Conf. Ser. Appl. Math., 53, SIAM, 1988.CrossRefGoogle Scholar
  10. [A10]
    Aris, R.: The mathematical theory of diffusion and reaction in permeable catalysts, 1–2, Clarendon Press, 1975.Google Scholar
  11. [A11]
    Buckmaster, J. and Ludford, G.S.S.: Theory of laminar flow, Cambridge Univ. Press, 1982.CrossRefGoogle Scholar
  12. [A12]
    Jones, C.: ‘Stability of the travelling wave solution of the FitzHugh-Nagumo system’, Trans. Amer. Math. Soc. 286 (1984), 431–469.CrossRefMathSciNetzbMATHGoogle Scholar
  13. [A13]
    Alexander, J., Gardner, R. and Jones, C.: ‘A topological invariant arising in the stability analysis of travelling waves’, J. Reine Angew. Math. (To appear).Google Scholar
  14. [A14]
    Nishiura, Y., Mimura, M., Ikeda, H. and Fujii, H.: ‘Singular limit analysis of stability of travelling wave solutions in bistable reaction-diffusion systems’, SIAM J. Math. Anal. 21 (1990), 85–122.CrossRefMathSciNetzbMATHGoogle Scholar
  15. [1]
    Harnack, A.: ‘Ueber die Vieltheitigkeit der ebenen algebraischen Kurven’, Math. Ann. 10 (1876), 189–198.CrossRefMathSciNetGoogle Scholar
  16. [2]
    Hilbert, D.: ‘Ueber die reellen Züge algebraischer Kurven’, Math. Ann. 38(1891), 115–138.CrossRefMathSciNetzbMATHGoogle Scholar
  17. [3]
    Hilbert, D.: ‘Mathematische Probleme’, Arch. Math. Phys. 1 (1901), 213–237.Google Scholar
  18. [4]
    Petrovskiῐ, I.G.: ‘On the topology of real plane algebraic curves’, Ann. of Math. 39, no. 1 (1938), 189–209.CrossRefMathSciNetGoogle Scholar
  19. [5]
    Oleῐnik, O.A. and Petrovskiῐ, I.G.: ‘On the topology of real algebraic surfaces’, Transi. Amer. Math. Soc. 7 (1952), 399–417. (Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 389–402)Google Scholar
  20. [6]
    Oleïnik, O.A.: ‘On the topology of real algebraic curves on an algebraic surface’, Mat. Sb. 29 (1951), 133–156 (in Russian).Google Scholar
  21. [7]
    Hilbert problems, Moscow, 1969 (in Russian).Google Scholar
  22. [8]
    Arnol’d, V.I.: ‘Distribution of the ovals of the real plane of algebraic curves, of involutions of four-dimensional smooth manifolds, and the arithmetic of integer-valued quadratic forms’, Funct. Anal. Appl. 5, no. 3 (1971), 169–176. (Funkts. Anal. 5, no. 3 (1971), 1–9)Google Scholar
  23. [9A]
    Rokhlin, V.A.: ‘Congruences modulo 16 in Hilbert’s sixteenth problem’, Funct. Anal. Appl. 6, no. 4 (1972), 301–306. (Funkts. Anal. 6, no. 4 (1972), 58–64)CrossRefGoogle Scholar
  24. [9B]
    Rokhlin, V.A.: ‘Congruences modulo 16 in Hilbert’s sixteenth problem’, Funct Anal. Appl. 7, no. 2 (1973), 163–165. (Funkts. Anal. 7, no. 2 (1973), 91–92)CrossRefzbMATHGoogle Scholar
  25. [10A]
    Kharlamov, V.M.: ‘A generalized Petrovskiï inequality’, Fund Anal. Appl. 8, no. 2 (1974), 132–137. (Funkts. Anal. 8, no. 2 (1974), 50–56)CrossRefzbMATHGoogle Scholar
  26. [10B]
    Kharlamov, V.M.: ‘A generalized Petrovskiï inequality II’, Funct. Anal. Appl. 9, no. 3 (1975), 266–268. (Funkts. Anal. 9, no. 3 (1975), 93–94)CrossRefGoogle Scholar
  27. [11]
    Kharlamov, V.M.: ‘Additive congruences for the Euler characteristic of real algebraic manifolds of even dimensions’, Funct Anal. Appl. 9, no. 2 (1975), 134–141. (Funkts. Anal. 9, no. 2(1975), 51–60)CrossRefzbMATHGoogle Scholar
  28. [12]
    Kharlamov, V.M.: ‘The topological type of nonsingular surfaces in RP3 of degree four’, Fund. Anal. Appl. 10, no. 4 (1976), 295–304. (Funkts. Anal. 10, no. 4 (1976), 55–68)CrossRefMathSciNetGoogle Scholar
  29. [13]
    Gudkov, D.A.: ‘The topology of real projective algebraic varieties’, Russian Math. Surveys 29, no. 4 (1974), 1–80. (Uspekhi Mat. Nauk 29, no. 4 0974), 3–79)CrossRefMathSciNetzbMATHGoogle Scholar
  30. [14]
    Sullivan, D.: Geometric topology, 1. Localization, periodicity, and Galois svmmetry, M.I.T., 1971.Google Scholar
  31. [A1]
    Viro O.: ‘Successes of the last tive years in the topology of real algebraic varieties’, in Proc. Internat. Congress Mathematicians, Warszawa 1983, PWN & North-Holland, 1984, pp. 603–619.Google Scholar
  32. [A2]
    Wilson, G.: ‘Hilbert’s sixteenth problem’, Topology 17 (1978), 53–74.CrossRefMathSciNetzbMATHGoogle Scholar
  33. [A1]
    Cartan, H.: ‘Variétés analytiques réelles et varieties analytiques complexes’, Bull. Soc. Math. France 85 (1957), 77–99.MathSciNetzbMATHGoogle Scholar
  34. [A2]
    Bruhat, F. and Cartan, H.: ‘Sur la structure des sous-ensembles analytiques réels’, C.R. Acad. Sci. Paris 244 (1957), 988–900.MathSciNetzbMATHGoogle Scholar
  35. [A3]
    Bruhat, F. and Cartan, H.: ‘Sur les composantes irréductibles d’un sous-ensemble’, C.R. Acad. Sci. Paris 244 (1957), 1123–1126.MathSciNetzbMATHGoogle Scholar
  36. [A4]
    Bruhat, F. and Whitney, H.: ‘Quelques propriétés fondamentales des ensembles analytiques-réels’, Comm. Math. Helv. 33(1959), 132–160.CrossRefMathSciNetzbMATHGoogle Scholar
  37. [A5]
    Narasimhan, R.: Introduction to the theory of analytic spaces, Lecture notes in math., 25, Springer, 1966.zbMATHGoogle Scholar
  38. [A6]
    Grauert, H. and Remmert, R.: Theory of Stein spaces, Springer, 1979 (translated from the German).zbMATHGoogle Scholar
  39. [1]
    Dedekind, R.: Essays on the theory of numbers, Dover, reprint, 1963 (translated from the German).zbMATHGoogle Scholar
  40. [2]
    Dantscher, V.: Vorlesungen über die Weierstrass’sche Theorie der irrationalen Zahlen, Teubner, 1908.zbMATHGoogle Scholar
  41. [3]
    Cantor, G.: ‘Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen’, Math. Ann. 5 (1872), 123–130.CrossRefMathSciNetzbMATHGoogle Scholar
  42. [4]
    Nemytskiῐ, V.V., Sludskaya, M.I. and Cherkasov, A.N.: A course of mathematical analysis, l, Moscow, 1957.Google Scholar
  43. [5]
    Il’in, V.A. and Poznyak, E.G.: Fundamentals of mathematical analysis, 1–2, Mir, 1982 (translated from the Russian).Google Scholar
  44. [6]
    Kudryavtsev, L.D.: A course of mathematical analysis, 1, Moscow, 1988 (in Russian).Google Scholar
  45. [7]
    Nikol’skiῐ, S.M.: A course of mathematical analysis, 1–2, Mir, 1977 (translated from the Russian).Google Scholar
  46. [8]
    Fichtenholz, G.M.: Differential und Integralrechnung, 1, Deutsch. Verlag Wissenschaft., 1964.zbMATHGoogle Scholar
  47. [9]
    Bourbaki, N.: General topology, Elements of mathematics, Addison-Wesley, 1966, Chapts. 3–4 (translated from the French).Google Scholar
  48. [A1]
    Heath, T.L.: A history of Greek mathematics, Dover, reprint, 1981.Google Scholar
  49. [A2]
    Heath, T.L.: The thirteen books of Euclid’s elements, 1–3, Dover, reprint, 1956.zbMATHGoogle Scholar
  50. [A3]
    Knorr, W.R.: The evolution of the Euclidean elements, Reidel, 1975.CrossRefzbMATHGoogle Scholar
  51. [A4]
    Landau, E.: Foundations of analysis, Chelsea, reprint, 1951 (translated from the German).zbMATHGoogle Scholar
  52. [A5]
    Rudin, W.: Principles of mathematical analysis, McGraw-Hill, 1976.zbMATHGoogle Scholar
  53. [A6]
    Gericke, H.: Geschichte des Zahlbegriffs, B.I. Mannheim, 1970.zbMATHGoogle Scholar
  54. [1]
    Kleene, S.C.: ‘On the interpretation of intuitionistic number theory’, J. Symbolic Logic 10 (1945), 109–124.CrossRefMathSciNetzbMATHGoogle Scholar
  55. [2]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1951.Google Scholar
  56. [3]
    Kleene, S.C. and Vesley, R.E.: The foundations of intuitionistic mathematics: especially in relation to recursive functions, North-Holland, 1965.zbMATHGoogle Scholar
  57. [4]
    Dragalin, A.G.: Mathematical intuitionism. Introduction to proof theory, Amer. Math. Soc, 1988 (translated from the Russian).zbMATHGoogle Scholar
  58. [A1]
    Hyland, J.M.E.: The effective topos’, in A.S. Troelstra and D. van Dalen (eds.): The L.E.J. Brouwer Centenary Symposium, North-Holland, 1982, pp. 165–216.CrossRefGoogle Scholar
  59. [1]
    Gauss, C.F.: Untersuchungen über höhere Arithmetik, Springer, 1889 (translated from the Latin).zbMATHGoogle Scholar
  60. [2]
    Gauss, C.F.: ‘Theoria residuorum biquadraticorum’, in Werke, Vol. 2, K. Gesellschaft Wissensch. Göttingen, 1876, p. 65.Google Scholar
  61. [3]
    Eisenstein, G.: ‘Beweis des Reciprocitätssatzes für die cubischen Reste in der Theorie der aus dritten Würzein der Einheit zusammengesetzten complexen Zahlen’, J. Math. 27 (1844), 289–310.zbMATHGoogle Scholar
  62. [4]
    Kummer, E.E.: ‘Allgemeine Reciprocitätsgesetze für beliebig hohe Potentzreste’, Ber. K. Akad. Wiss. Berlin (1850), 154–165.Google Scholar
  63. [5]
    Hilbert, D.: ‘Die Theorie der algebraischen Zahlkörper’, Jahresber. Deutsch. Math.-Verein 4 (1897), 175–546.Google Scholar
  64. [6]
    Hilbert, D.: ‘Ueber die théorie der relativquadratischen Zahlkörpern’, Jahresber. Deutsch. Math.-Verein 6, no. 1 (1899), 88–94.zbMATHGoogle Scholar
  65. [7A]
    Furtwängler, Ph.: ‘Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Erster Teil)’, Math. Ann. 67 (1909), 1–31.CrossRefMathSciNetzbMATHGoogle Scholar
  66. [7B]
    Furtwängler, Ph.: ‘Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Zweiter Teil)’, Math. Ann. 72 (1912). 346–386.CrossRefMathSciNetzbMATHGoogle Scholar
  67. [7C]
    Furtwängler, Ph.: ‘Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Dritter und letzter Teil)’, Math. Ann. 74 (1913), 413–429.CrossRefMathSciNetzbMATHGoogle Scholar
  68. [8]
    Takagi, T.: ‘Ueber eine Theorie der relativ Abel’schen Zahlkörpers’, J. Coll. Sci. Tokyo 41, no. 9 (1920), 1–133.MathSciNetGoogle Scholar
  69. [9]
    Artin, E.: ‘Beweis des allgemeinen Reziprocitätsgesetzes’, Abh. Math. Sem. Univ. Hamburg 5 (1928), 353–363. (also: Collected Papers, Addison-Wesley, 1965, pp. 131–141).CrossRefGoogle Scholar
  70. [10]
    Hasse, H.: ‘Die Struktur der R. Brauerschen Algebrenklassengruppe über einen algebraischer Zahlkörper’, Math. Ann. 107 (1933), 731–760.CrossRefMathSciNetGoogle Scholar
  71. [11]
    Shafarevich, I.R.: ‘A general reciprocity law’, Uspekhi Mat. Nauk 3, no. 3 (1948), 165 (in Russian).Google Scholar
  72. [12]
    Lapin, A.I.: ‘A general law of dependence and a new foundation of class field theory’, Izv. Akad. Nauk SSSR Ser. Mat. 18 (1954), 335–378 (in Russian).MathSciNetzbMATHGoogle Scholar
  73. [13]
    Cassels, J.W.S. and Fröhlich, A. (eds.): Algebraic number theory, Acad. Press, 1986.Google Scholar
  74. [14]
    Faddeev, D.K.: ‘On Hilbert’s ninth problem’, in Hilbert problems, Moscow, 1969, pp. 131–140 (in Russian).Google Scholar
  75. [A1]
    Neukirch, J.: Class field theory, Springer, 1986.CrossRefzbMATHGoogle Scholar
  76. [A1]
    Young, D.M. and Gregory, R.T.: A survey of numerical mathematics, Dover, reprint, 1988, p. 362ff.Google Scholar
  77. [1]
    Scheeffer, L.: ‘Allgemeine Untersuchungen über Rectification der Curven’, Acta Math. 5 (1885), 49–82.CrossRefMathSciNetGoogle Scholar
  78. [2]
    Jordan, C.: Cours d’analyse, Gauthier-Villars, 1883.Google Scholar
  79. [A1]
    Spivak, M.: A comprehensive introduction to differential geometry, 2, Publish or Perish, 1970.Google Scholar
  80. [1]
    Markushevich, A.I.: Rekursive Folgen, Deutsch. Verlag Wissenschaft., 1973 (translated from the Russian).zbMATHGoogle Scholar
  81. [A1]
    Bailey, N.T.J.: The elements of stochastic processes, Wiley, 1964.zbMATHGoogle Scholar
  82. [A2]
    Chung, K.L.: Markov chains with stationary transition probabilities, Springer, 1960.zbMATHGoogle Scholar
  83. [A3]
    Gihman, I.I. [I.I. Gikhman] and Skorokhod, A.V.: The theory of stochastic processes, I, Springer, 1974 (translated from the Russian).Google Scholar
  84. [A4]
    Spitzer, V.: Principles of random walk, v. Nostrand, 1964.zbMATHGoogle Scholar
  85. [1]
    Izobov, N.A.: ‘Linear systems of ordinary differential equations’, J. Soviet Math. 5 (1976), 46–96. (Itogi Nauk. i Tekhn. Mat. Anal. 12 (1974), 71–146)CrossRefzbMATHGoogle Scholar
  86. [A1]
    Auslander, J. and Hahn, F.: ‘Point transitive flows, algebras of functions and the Bebutov system’, Fund. Math. 60 (1967), 117–137.MathSciNetzbMATHGoogle Scholar
  87. [1]
    Birkhoff, G.D.: Dynamical systems, Amer. Mat. Soc, 1927.zbMATHGoogle Scholar
  88. [2]
    Nemytskiῐ, V.V. and Stepanov, V.V.: Qualitative theory of differential equations, Princeton Univ. Press, 1960 (translated from the Russian).Google Scholar
  89. [A1]
    Furstenberg, H.: Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, 1981.zbMATHGoogle Scholar
  90. [A2]
    Gottschalk, W.H. and Hedlund, G.A.: Topological dynamics, Amer. Math. Soc, 1955.zbMATHGoogle Scholar
  91. [A3]
    Sibirsky, K.S. [K.S. Sibirskiῐ]: Introduction to topological dynamics, Noordhoff, 1975 (translated from the Russian).zbMATHGoogle Scholar
  92. [1]
    Peter, R.: Recursive functions, Acad. Press, 1967 (translated from the German).zbMATHGoogle Scholar
  93. [2]
    Mal’tsev, A.I.: Algorithms and recursive functions, Wolters-Noordhoff, 1970 (translated from the Russian).zbMATHGoogle Scholar
  94. [3]
    Uspenskiῐ, V.A.: Leçons sur les fonctions calculables, Hermann, 1966 (translated from the Russian).Google Scholar
  95. [4]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1951.Google Scholar
  96. [5]
    Moschovakis, Y.N.: Elementary introduction on abstract structures, North-Holland, 1974.Google Scholar
  97. [A1]
    Rogers, H., jr.: Theory of recursive functions and effective computability, McGraw-Hill, 1967.zbMATHGoogle Scholar
  98. [1]
    Peter, R.: Recursive functions, Acad. Press, 1967 (translated from the German).zbMATHGoogle Scholar
  99. [A1]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1950, p. 234.Google Scholar
  100. [A2]
    Odifreddi, P.: Classical recursion theory, North-Holland, 1989, Chapt. II; esp. pp. 199ff.zbMATHGoogle Scholar
  101. [1]
    Rogers, jr., H.: Theory of recursive functions and effective computability, McGraw-Hill, 1967.zbMATHGoogle Scholar
  102. [2]
    Barwise, J.: Admissible sets and structures, Springer, 1975.zbMATHGoogle Scholar
  103. [1]
    Rogers, jr., H.: Theory of recursive functions and effective computability, McGraw-Hill, 1967.zbMATHGoogle Scholar
  104. [2]
    Dekker, J.C.E. and Myhill, J.: ‘Recursive equivalence types’, Univ. California Publ. 3 (1960), 67–213.MathSciNetGoogle Scholar
  105. [A1]
    Tierney, L.: ‘A space-efficient recursive procedure for estimating a quantile of an unknown distribution’, SIAM J. Scient. Statist. Comp. 4 (1983), 706–711.CrossRefMathSciNetzbMATHGoogle Scholar
  106. [A2]
    Holst, U.: ‘Recursive estimation of quantiles using kernel density estimators’, Sequential Anal. 6 (1987), 219–237.CrossRefMathSciNetzbMATHGoogle Scholar
  107. [A3]
    Robbins, H. and Monro, S.: ‘A stochastic approximation method’, Ann. Math. Stat. 22 (1951), 400–427.CrossRefMathSciNetzbMATHGoogle Scholar
  108. [A4]
    Rousseeuw, P.J. and Bassett, G.W.: The remedian: a robust averaging method for large data sets’, J. Amer. Statist. Assoc. 85(1990), 97–104.MathSciNetzbMATHGoogle Scholar
  109. [A5]
    Pearl, J.: ‘A space-efficient on-line method of computing quantile estimators’, J. Algorithms 2 (1981), 164–177.CrossRefMathSciNetzbMATHGoogle Scholar
  110. [1]
    Mal’tsev, A.I.: Algorithms and recursive functions, Wolters-Noordhoff, 1970 (translated from the Russian).zbMATHGoogle Scholar
  111. [2]
    Rogers, jr., H.: Theory of recursive functions and effective computability, McGraw-Hill, 1967.zbMATHGoogle Scholar
  112. [1]
    Everett, H.: ‘Recursive games’, in H.W. Kuhn, et al. (ed.): Contributions to the theory of games, Vol. 3, Princeton Univ. Press, 1957, pp. 47–87.Google Scholar
  113. [A1]
    Alpern, S.: ‘Games with repeated decisions’, SIAM J. Control Optim. 26, no. 2 (1988), 468–477.CrossRefMathSciNetzbMATHGoogle Scholar
  114. [1]
    Mal’tsev, A.I.: ‘Constructive algebras I’, Russian Math. Surveys 16. no. 3 (1961), 77–129. (Also in: A.I. Mal’cev, The metamathematics of algebraic systems, North-Holland, 1971, Chapt. 18). (Uspekhi Mat. Nauk 16. no. 3 (1962). 3–60)CrossRefzbMATHGoogle Scholar
  115. [2]
    Ershov, Yu.L.: Theory of enumerations, 3. Constructive models. Novosibirsk. 1974 (in Russian).Google Scholar
  116. [3]
    Ershov, Yu.L., Lavrov, I.A., Taïmanov, A.D. and Taῐtsiin, M.A.: ‘Elementary theories’. Russian Math. Surveys 20, no. 4 (1965), 35–105.CrossRefGoogle Scholar
  117. [3a]
    Ershov, Yu.L., Lavrov, I.A., Taïmanov, A.D. and Taῐtsiin, M.A.: ‘Elementary theories’. (Uspekhi Mat. Nauk 20. no. 4 (1965), 37–108)zbMATHGoogle Scholar
  118. [4]
    Goncharov, S.S.: ‘Selfstability, and computable families of constructivizations’. Algebra and Logic 14, no. 6 (1975). 392–408.CrossRefGoogle Scholar
  119. [4a]
    Goncharov, S.S.: ‘Selfstability, and computable families of constructivizations’. (Algebra i Logika 14, no. 6 (1975). 647–680)MathSciNetzbMATHGoogle Scholar
  120. [5]
    Nurtazin, A.T.: ‘Strong and weak constructivizations, and enumerable families’, Algebra and Logic 13, no. 3 (1974), 177–184.CrossRefMathSciNetGoogle Scholar
  121. [5a]
    Nurtazin, A.T.: ‘Strong and weak constructivizations, and enumerable families’, (Algebra i Logika 13, no. 3 (1974), 311–323)MathSciNetzbMATHGoogle Scholar
  122. [6]
    Cobham, A.: Summaries of talks presented at the summer institute for symbolic logic Cornell University, 1957, Washington, 1960, pp. 391–395.Google Scholar
  123. [7]
    Fröhlich, A. and Shepherdson, J.C.: ‘Effective procedures in field theory’, Phil. Trans. Royal. Soc. London Ser. A. 2458 (1956), 407–428.CrossRefGoogle Scholar
  124. [8]
    Mostowski, A.: ‘A formula with no recursively enumerable model’, Fund. Math. 42, no. 1 (1955), 125–140.MathSciNetzbMATHGoogle Scholar
  125. [9]
    Rabin, M.O.: ‘Computable algebra, general theory and theory of computable fields’, Trans. Amer. Math. Soc. 95, no. 2 (1960), 341–360.MathSciNetzbMATHGoogle Scholar
  126. [10]
    Vaught, R.L.: ‘Sentences true in all constructive models’, J. Symb. Logic 25, no. 1 (1960), 39–58.CrossRefMathSciNetzbMATHGoogle Scholar
  127. [11]
    Goncharov, S.S.: ‘Problem of the number of non-self-equivalent constructivizations’, Algebra and Logic 19, no. 6 (1980), 401–414.CrossRefzbMATHGoogle Scholar
  128. [11a]
    Goncharov, S.S.: ‘Problem of the number of non-self-equivalent constructivizations’, (Algebra i Logika 19, no. 6 (1980), 621–639)MathSciNetGoogle Scholar
  129. [1]
    Kleene, S.C.: ‘On the interpretation of intuitionistic number theory’, J. Symbolic Logic 10 (1945), 109–124.CrossRefMathSciNetzbMATHGoogle Scholar
  130. [2]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1951.Google Scholar
  131. [3]
    Nelson, D.: ‘Recursive functions and intuitionistic number theory’, Trans. Amer. Math. Soc. 61 (1947), 307–368.CrossRefMathSciNetGoogle Scholar
  132. [4]
    Rose, G.F.: ‘Propositional calculus and realizability’, Trans. Amer. Math. Soc. 75 (1953), 1–19.CrossRefMathSciNetzbMATHGoogle Scholar
  133. [5]
    Novikov, P.S.: Constructive mathematical logic from a classical point of view, Moscow, 1977 (in Russian).Google Scholar
  134. [A1]
    Beeson, M.J.: Foundations of constructive mathematics, Springer, 1985.zbMATHGoogle Scholar
  135. [A1]
    Poorten, A.J. van der: ‘Some facts that should be better known, especially about rational functions’, in R.A. Molin (ed.): Number Theory and Applications, Kluwer, 1989, pp. 497–528.Google Scholar
  136. [1]
    Post, E.L.: ‘Recursively enumerable sets of positive integers and their decision problems’, Bull. Amer. Math. Soc. 50 (1944), 284–316.CrossRefMathSciNetzbMATHGoogle Scholar
  137. [2]
    Friedberg, R.M.: ‘Three theorems on recursive enumeration: I. Decomposition, II. Maximal set, III. Enumeration without duplication’, J. Symbolic Logic 23 (1958), 309–316.CrossRefMathSciNetGoogle Scholar
  138. [3]
    Lachlan, A.H.: ‘On the lattice of recursively enumerable sets’, Trans. Amer. Math. Soc. 130. no. 1 (1968), 1–37.CrossRefMathSciNetzbMATHGoogle Scholar
  139. [4]
    Ershov, Yu.L.: ‘Hyperhypersimple w-degrees’. Algebra and Logic 8, no. 5 (1969), 298–315.CrossRefGoogle Scholar
  140. [4a]
    Ershov, Yu.L.: ‘Hyperhypersimple w-degrees’. (Algebra i Logika 8, no. 5 (1969), 523–552)MathSciNetzbMATHGoogle Scholar
  141. [5]
    Degtev, A.N.: ‘Reductibilities of tabular type in the theory of algorithms’, Russian Math. Surveys 34, no. 3 (1979). 155–192.CrossRefMathSciNetzbMATHGoogle Scholar
  142. [5a]
    Degtev, A.N.: ‘Reductibilities of tabular type in the theory of algorithms’, (Uspekhi Mat. Nauk 34, no. 3 (1979), 137–168)MathSciNetzbMATHGoogle Scholar
  143. [6]
    Soare, R.J.: ‘Recursively enumerable sets and degrees’, Bull Amer. Math. Soc. 84, no. 6 (1978), 1149–1181.CrossRefMathSciNetzbMATHGoogle Scholar
  144. [7]
    Dekker, J.C.E. and Myhill, J.: ‘Recursive equivalence types’, Publ. Math. Univ. Calif. 3. no. 3 (1960). 67–213.MathSciNetGoogle Scholar
  145. [8]
    Mal’tsev, A.I.: Algorithms and recursive functions, Wolters-Noordhoff, 1970 (translated from the Russian).zbMATHGoogle Scholar
  146. [9]
    Rogers, jr., H.: Theory of recursive functions and effective computability, McGraw-Hill. 1967.zbMATHGoogle Scholar
  147. [A1]
    Muchnik, A.A.: ‘On the unsolvability of the reducibility problem in the theory of algorithms’, Dokl. Akad. Nauk SSSR 108, no. 2 (1956), 194–197 (in Russian).MathSciNetzbMATHGoogle Scholar
  148. [A2]
    Soare, R.I.: Recursively enumerable sets and degrees, a study of computable functions and generated sets, Springer, 1987.Google Scholar
  149. [A3]
    Barwise, J. (ed.): Handbook of mathematical logic, North-Holland, 1978.zbMATHGoogle Scholar
  150. [A4]
    Friedberg, R.M.: Two recursively enumerable sets of incomparible degrees of unsolvability (solution of Post’s problem)’, Proc. Nat. Acad. Sci. USA 43 (1957), 236–238.CrossRefMathSciNetzbMATHGoogle Scholar
  151. [A1]
    Bass, H.: Algebraic K-theory, Benjamin, 1967, p. 152ff.zbMATHGoogle Scholar
  152. [A2]
    Hahn, A.J. and O’Meara, O.T.: The classical groups and K-theory, Springer, 1979, §2.2D.Google Scholar
  153. [1]
    Artin, M.: ‘Algebraic approximation of structures over complete local rings’, Publ. Math. IHES 36 (1969), 23–58.MathSciNetzbMATHGoogle Scholar
  154. [2]
    Grothendieck, A. and Dieudonné, J.: ‘Eléments de géométrie algebrique I. Le langage des schémas’, Publ Math. IHES 4 (1960).Google Scholar
  155. [3]
    Mumford, D.: Lectures on curves on an algebraic surface, Princeton Univ. Press, 1966.zbMATHGoogle Scholar
  156. [A1]
    Oort, F.: Algebraic group schemes in characteristic zero are reduced’, Invent. Math. 2 (1969), 79–80.CrossRefMathSciNetGoogle Scholar
  157. [A2]
    Harshorne, R.: Algebraic geometry, Springer, 1977.Google Scholar
  158. [A1]
    Russell, B. and Whitehead, A.N.: Principia mathematica, 1–3, Cambridge Univ. Press, 1925–1927.Google Scholar
  159. [1]
    Lyapunov, A.M.: Stability of motion, Acad. Press, 1966 (translated from the Russian).zbMATHGoogle Scholar
  160. [2]
    Erugin, N.P.: ‘Reducible systems’, Trudy Mat. Inst. Steklov. 13 (1946) (in Russian).Google Scholar
  161. [A1]
    Curtis, C.W. and Reiner, I.: Methods of representation theory, 1–2, Wiley (Interscience), 1981–1987.Google Scholar
  162. [1]
    Lichnerowicz, A.: Global theory of connections and holonomy groups, Noordhoff, 1976 (translated from the French).CrossRefzbMATHGoogle Scholar
  163. [2]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 1, Wiley, 1963.Google Scholar
  164. [3]
    Wu, H.: ‘On the de Rham decomposition theorem’, Illinois J. Math. 8, no. 2(1964), 291–311.MathSciNetzbMATHGoogle Scholar
  165. [4]
    Shapiro, Ya.L.: ‘Reducible Riemannain spaces and two-sheeted structures on them’, Soviet Math. Dokl. 13, no. 5 (1972), 1345–1348.zbMATHGoogle Scholar
  166. [4a]
    Shapiro, Ya.L.: ‘Reducible Riemannain spaces and two-sheeted structures on them’, (Dokl. Akad. Nauk SSSR 206, no. 4 (1972), 831–833)MathSciNetGoogle Scholar
  167. [A1]
    Rham, G. de: ‘Sur la réductibilité d’un espace de Riemann’, Comm. Math. Helvetica 26 (1952), 328–344.CrossRefzbMATHGoogle Scholar
  168. [1]
    Springer, T.: Invariant theory, Lecture notes in math., 585, Springer, 1977.zbMATHGoogle Scholar
  169. [2]
    Humphreys, J.E.: Linear algebraic groups, Springer, 1975.zbMATHGoogle Scholar
  170. [3]
    Borel, A. and Tits, J.: ‘Groupes réductifs’, Publ. Math. IHES 27(1965), 55–150.MathSciNetGoogle Scholar
  171. [4]
    Popov, V.L.: ‘Hilbert’s theorem on invariants’, Soviet Math. Dokl. 20, no. 6 (1979), 1318–1322.zbMATHGoogle Scholar
  172. [4a]
    Popov, V.L.: ‘Hilbert’s theorem on invariants’, (Dokl. Akad. Nauk SSSR 249, no. 3(1979), 551–555)MathSciNetGoogle Scholar
  173. [1]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 2, Wiley, 1969.Google Scholar
  174. [2]
    Rashevskiῐ, P.K.: ‘On the geometry of homogeneous spaces’, Trudy Sem. Vektor, i Tenzor. Anal. 9 (1952), 49–74.Google Scholar
  175. [3]
    Nomizu, K.: ‘Invariant affine connections on homogeneous spaces’, Amer. J. Math. 76, no. 1 (1954), 33–65.CrossRefMathSciNetzbMATHGoogle Scholar
  176. [4]
    Kantor, I.L.: ‘Transitive differential groups and invariant connections in homogeneous spaces’, Trudy Sem. Vektor, i Tenzor. Anal. 13(1966), 310–398.MathSciNetGoogle Scholar
  177. [5]
    Vinberg, E.B.: ‘Invariant linear connections in a homogeneous space’, Trudy Moskov. Mat. Obshch. 9 (1960), 191–210 (in Russian).MathSciNetGoogle Scholar
  178. [6]
    Alekseevskiῐ, D.V.: ‘Maximally homogeneous G-structures and filtered Lie algebras’, Soviet Math. Dokl. 37, no. 2 (1988), 381–384.MathSciNetGoogle Scholar
  179. [6a]
    Alekseevskiῐ, D.V.: ‘Maximally homogeneous G-structures and filtered Lie algebras’, (Dokl. Akad. Nauk SSSR 299, no. 3 (1988), 521–526)Google Scholar
  180. [A1]
    Wolff, J.: Spaces of constant curvature, McGraw-Hill, 1967.Google Scholar
  181. [1]
    Rees, D.: ‘On semi-groups’, Proc. Cambridge Philos. Soc. 36 (1940), 387–400.CrossRefMathSciNetGoogle Scholar
  182. [2]
    Clifford, A.H. and Preston, G.B.: The algebraic theory of semigroups, 1–2, Amer. Math. Soc, 1961–1967.zbMATHGoogle Scholar
  183. [3]
    Lyapin, E.S.: Semigroups, Amer. Math. Soc, 1974 (translated from the Russian).zbMATHGoogle Scholar
  184. [1]
    Turchin, V.F.: ‘A meta-algorithmic language’, Kibernetika, no. 4 (1968), 45–54 (in Russian). English abstract.Google Scholar
  185. [2]
    Turchin, V.F. and Serdobol’skiῐ, V.I.: ‘The language REFAL and its use for transformation of algebraic expressions’, Kibernetika, no. 3 (1969), 58–62 (in Russian). English abstract.Google Scholar
  186. [3]
    Florentzev, S.N., Olyunin, V.Yu. and Turchin, V.F.: Proc. first all-union Conf. on programming, Kiev, 1968, pp. 114–133 (in Russian).Google Scholar
  187. [4]
    Romanenko, S.A. and Turchin, V.F.: Proc. second all-union Conf. on programming, Novosibirsk, 1970, pp. 31–42 (in Russian).Google Scholar
  188. [5]
    Budnit, A.P., et al.: Yadernqya Fizika 14 (1971), 304–313.Google Scholar
  189. [A1]
    Levi-Civita, T. and Amaldi, U.: Lezioni di meccanica razionale, Zanichelli, 1949.Google Scholar
  190. [1]
    Arkhangel’skiῐ, A.V. and Ponomarev, V.I.: Fundamentals of general topology: problems and exercises, Reidel, 1984 (translated from the Russian).Google Scholar
  191. [A1]
    Fleissner, W.G.: The normal Moore space conjecture and large cardinals’, in K. Kunen and J.E. Vaughan (eds.): Handbook of Set-Theoretic Topology, North-Holland, 1984, pp. 733–760.Google Scholar
  192. [1]
    Bourbaki, N.: Groupes et algèbres de Lie, Eléments de mathématiques, Hermann, 1968, Chapts. 4–6.zbMATHGoogle Scholar
  193. [2]
    Vinberg, E.B.: ‘Discrete linear groups generated by reflections’, Math. USSR Izv. 35, no. 5 (1971), 1083–1119.CrossRefGoogle Scholar
  194. [2a]
    Vinberg, E.B.: ‘Discrete linear groups generated by reflections’, (Izv. Akad. Nauk SSSR Ser. Mat. 35, no. 5 (1971), 1072–1112)MathSciNetzbMATHGoogle Scholar
  195. [3]
    Gottschling, E.: ‘Reflections in bounded symmetric domains’, Comm. Pure Appl. Math. 22 (1969), 693–714.CrossRefMathSciNetzbMATHGoogle Scholar
  196. [4]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  197. [A1]
    Rosenfeld, B.A. [B.A. Rozenfel’d]: A history of noneuclidean geometry, Springer, 1988 (translated from the Russian).CrossRefGoogle Scholar
  198. [A2]
    Berger, M.: Geometry, Springer, 1987 (translated from the French).Google Scholar
  199. [A3]
    Coxeter, H.S.M.: Introduction to geometry, Wiley, 1963.Google Scholar
  200. [A4]
    Greenberg, M.: Euclidean and non-euclidean geometry, Freeman, 1980.Google Scholar
  201. [A5]
    Artmann, B.: Lineare Algebra, Birkhäuser, 1986.zbMATHGoogle Scholar
  202. [A6]
    Halmos, P.R.: Finite-dimensional vector spaces, v. Nostrand, 1958.zbMATHGoogle Scholar
  203. [1]
    Coxeter, H.S.M.: ‘On complexes with transitive groups of automorphisms’, Ann. of Math. 35 (1934), 588–621.CrossRefMathSciNetGoogle Scholar
  204. [2]
    Coxeter, H.S.M. and Moser, W.O.J.: Generators and relations for discrete groups, Springer, 1984.Google Scholar
  205. [3]
    Tits, J.: ‘Groupes simples et géométries associées’, in Proc. Internat. Congress of Mathematicians 1962, Dursholm, Mittag-Leffler Institute, 1963, pp. 197–221.Google Scholar
  206. [4]
    Bourbaki, N.: Groupes et algèbres de Lie, Eléments de mathématiques, Hermann, 1968, Chapts. 4–5.Google Scholar
  207. [5A]
    Andreev, E.M.: ‘On convex polyhedra in Lobačevskiῐ spaces’. Math. USSR-Sb. 10. no. 3 (1970). 413–440.CrossRefzbMATHGoogle Scholar
  208. [5A]
    Andreev, E.M.: ‘On convex polyhedra in Lobačevskiῐ spaces’. (Mat. Sh. 81 (1970), 445–478)Google Scholar
  209. [5B]
    Andreev, E.M.: ‘On convex polyhedra of finite volume in Lobačevskiῐ space’. Math. USSR-Sb. 12, no. 2 (1970), 255–259.CrossRefGoogle Scholar
  210. [5B]
    Andreev, E.M.: ‘On convex polyhedra of finite volume in Lobačevskiῐ space’. (Mat. Sb. 83(1970), 256–260)MathSciNetGoogle Scholar
  211. [6]
    Makarov, V.S.: ‘On Fedorov groups of the four- and five-dimensional Lobachevskiῐ spaces’, in Studies in general algebra. Vol. 1, Kishinev, 1968, pp. 120–129 (in Russian).Google Scholar
  212. [7A]
    Vinberg, E.B.: ‘Discrete groups generated by reflections in Lobačevskiῐ spaces’. Math. USSR-Sb. 1, no. 3 (1967), 429–444.CrossRefGoogle Scholar
  213. [7A]
    Vinberg, E.B.: ‘Discrete groups generated by reflections in Lobačevskiῐ spaces’. (Mat. Sb. 72(1967), 471–488)MathSciNetGoogle Scholar
  214. [7B]
    Vinberg, E.B.: ‘On groups of unit elements of certain quadratic forms’, Math. USSR-Sb. 16, no. 1 (1972), 17–35.CrossRefzbMATHGoogle Scholar
  215. [7B]
    Vinberg, E.B.: ‘On groups of unit elements of certain quadratic forms’, (Mat. Sb. 87(1972), 18–36)MathSciNetGoogle Scholar
  216. [8]
    Shephard, G.C. and Todd, J.A.: ‘Finite unitary reflection groups’, Canad. J. Math. 6 (1954), 274–304.CrossRefMathSciNetzbMATHGoogle Scholar
  217. [9]
    Zalesskiῐ, A.E. and Serezhkin, V.N.: ‘Finite linear groups generated by reflections’, Math. USSR-Izv. 17, no. 3 (1981), 477–503.CrossRefGoogle Scholar
  218. [9a]
    Zalesskiῐ, A.E. and Serezhkin, V.N.: ‘Finite linear groups generated by reflections’, (Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 1279–1307)MathSciNetGoogle Scholar
  219. [A1]
    Cohen, A.M.: ‘Finite quaternionic reflection groups’, J. of Algebra 64 (1980), 293–324.CrossRefzbMATHGoogle Scholar
  220. [A2]
    Wagner, A.: ‘Determination of the finite primitive reflection groups over an arbitrary field of characteristic not 2, I’, Geom. Ded. 9 (1980), 239–253.CrossRefzbMATHGoogle Scholar
  221. [A3]
    Wagner, A.: ‘Determination of the finite primitive reflection groups over an arbitrary field of characteristic not 2, II’, Geom. Ded. 10(1981), 191–203.CrossRefzbMATHGoogle Scholar
  222. [A4]
    Wagner, A.: ‘Determination of the finite primitive reflection groups over an arbitrary field of characteristic not 2, III’, Geom. Ded. 10 (1981), 475–523.CrossRefzbMATHGoogle Scholar
  223. [1]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  224. [1]
    Dunford, N. and Schwartz, J.T.: Linear operators. General theory, 1, Interscience, 1958.Google Scholar
  225. [2]
    Yosida, K.: Functional analysis, Springer, 1980.zbMATHGoogle Scholar
  226. [3]
    Kantorovich, L.V. and Akilov, G.P.: Functional analysis, Pergamon, 1982 (translated from the Russian).zbMATHGoogle Scholar
  227. [A1]
    Beauzamy, B.: Introduction to Banach spaces and their geometry, North-Holland, 1982.zbMATHGoogle Scholar
  228. [A2]
    Day, M.M.: Normed linear spaces, Springer, 1973.zbMATHGoogle Scholar
  229. [A3]
    Dulst, D. van: Reflexive and superreflexive Banach spaces, MC Tracts, 102, Math. Centre, 1978.zbMATHGoogle Scholar
  230. [A1]
    Kleene, S.C.: Introduction to metamathematics, North-Holland & Noordhoff, 1959, p. 194ff.zbMATHGoogle Scholar
  231. [1]
    Cramér, H.: Mathematical methods of statistics, Princeton Univ. Press, 1946.zbMATHGoogle Scholar
  232. [2]
    Kendall, M.G. and Stuart, A.: The advanced theory of statistics, 2. Inference and relationship, Griffin, 1979.zbMATHGoogle Scholar
  233. [1]
    Kendall, M.G. and Stuart, A.: The advanced theory of statistics, 2. Inference and relationship, Griffin, 1979.zbMATHGoogle Scholar
  234. [2]
    Smirnov, N.V. and Dunin-Barkovskiῐ, N.V.: Mathematische Statistik in der Technik, Deutsch. Verlag Wissenschaft., 1969 (translated from the Russian).Google Scholar
  235. [3]
    Aῐvazyan, S.A.: Statistical research on dependence, Moscow, 1968 (in Russian).Google Scholar
  236. [4]
    Rao, C.: Linear statistical inference and its applications, Wiley, 1965.zbMATHGoogle Scholar
  237. [5]
    Draper, N.R. and Smith, H.: Applied regression analysis, Wiley, 1981.zbMATHGoogle Scholar
  238. [A1]
    Härdle, W.: Applied nonparametric regression, Cambridge Univ. Press, 1990.zbMATHGoogle Scholar
  239. [A1]
    Malinvaud, E.: Statistical methods of econometrics, North-Holland, 1970.zbMATHGoogle Scholar
  240. [A2]
    Theil, H.: Principles of econometrics, North-Holland, 1971.zbMATHGoogle Scholar
  241. [1]
    Grenander, U. and Rosenblatt, M.: Statistical analysis of stationary time series, Wiley, 1957.zbMATHGoogle Scholar
  242. [1]
    Gorenstein, D.: Finite groups, Chelsea, reprint, 1980.zbMATHGoogle Scholar
  243. [2]
    Thompson, J.G.: ‘Finite groups with fixed-point-free automorphisms of prime order’, Proc. Nat. Acad. Sci. 45 (1959), 578–581.CrossRefMathSciNetzbMATHGoogle Scholar
  244. [1]
    Keldysh, M.V.: ‘On the solvability and stability of the Dirichlet problem’, Uspekhi Mat. Nauk 8 (1941), 171–232 (in Russian).Google Scholar
  245. [2]
    Landkof, N.S.: Foundations of modern potential theory, Springer, 1972 (translated from the Russian).zbMATHGoogle Scholar
  246. [3]
    Hayman, W.K. and Kennedy, P.: Subharmonic functions, Acad. Press, 1976.zbMATHGoogle Scholar
  247. [A1]
    Bliedtner, J. and Hansen, W.: Potential theory. An analytic and probabilistic approach to balayage, Springer, 1986.zbMATHGoogle Scholar
  248. [A2]
    Lebesgue, H.: ‘Sur des cas d’impossibilité du problème de Dirichlet ordinaire’, C.R. Séances Soc. Math. France 41 (1913), 17.Google Scholar
  249. [A3]
    Lebesgue, H.: ‘Conditions de régularité, conditions d’irrégularité, conditions d’impossibilité dans le problème de Dirichlet’, C.R. Acad. Sci. Paris 178 (1924), 349–354.zbMATHGoogle Scholar
  250. [A4]
    Wiener, N.: ‘The Dirichlet problem’, J. Math. Phys. 3 (1924), 127–146.zbMATHGoogle Scholar
  251. [A5]
    Tsuji, M.: Potential theory in modern function theory, Chelsea, reprint, 1975.zbMATHGoogle Scholar
  252. [A6]
    Wermer, J.: Potential theory, Lecture notes in math., 408, Springer, 1981.zbMATHGoogle Scholar
  253. [1]
    Clifford, A.H. and Preston, G.B.: Fhe algebraic theory of semigroups, 1–2, Amer. Math. Soc. 1961–1967.Google Scholar
  254. [2]
    Lyapin, E.S.: Semigroups, Amer. Math. Soc. 1974 (translated from the Russian).zbMATHGoogle Scholar
  255. [1]
    Kudryavtsev, V.B., Aleshin, S.V. and Podkolzin, A.S.: Elements of automata theory, Moscow, 1978 (in Russian).Google Scholar
  256. [2]
    Salomaa, A.: ‘Axiomatization of an algebra of events realizable by logical networks’, Probl. Kibemet. 17 (1966), 237–246 (in Russian).MathSciNetGoogle Scholar
  257. [3A]
    Yanov, Yu.I.: ‘Invariant operations over events’, Probl. Kibernet. 12 (1964), 253–258 (in Russian).Google Scholar
  258. [3B]
    Yanov, Yu.I.: ‘Some subalgebras of events having no finite complete systems of identities’, Probl. Kibemet. 17 (1966), 255–258 (in Russian).Google Scholar
  259. [4]
    Ushchumlich, Sh.: ‘Investigation of some algorithms for the analysis and synthesis of automata’, Soviet Math. Dokl. 20 (1979), 771–775. (Dokl. Akad. Nauk SSSR 247, no. 3 (1979), 561–565)zbMATHGoogle Scholar
  260. [A1]
    Salomaa, A.: Theory of automata, Pergamon Press, 1969.zbMATHGoogle Scholar
  261. [A2]
    Conway, J.H.: Regular algebra and finite machines, Chapman & Hall, 1971.zbMATHGoogle Scholar
  262. [A3]
    Eilenberg, S.: Automata, languages and machines, A, Acad. Press, 1974.zbMATHGoogle Scholar
  263. [A4]
    Robin, M.O. and Scott, O.: ‘Finite automata and their decision problems’, IBM J. Res. Devel. 3 (1959), 114–125.CrossRefGoogle Scholar
  264. [1]
    Bliss, G.A.: Lectures on the calculus of variations, Chicago Univ. Press, 1947.zbMATHGoogle Scholar
  265. [2]
    Lavrent’ev, M.A. and Lyusternik, L.A.: A course in variational calculus, Moscow-Leningrad, 1950 (in Russian).Google Scholar
  266. [A1]
    Cesari, L.: Optimization — theory and applications. Problems with ordinary differential equations, Springer, 1983.zbMATHGoogle Scholar
  267. [A2]
    Petrov, Yu.P.: Variational methods in optimum control theory, Acad. Press, 1968, Chapt. IV (translated from the Russian).zbMATHGoogle Scholar
  268. [A1]
    Springer, G.: Introduction to Riemann surfaces, Addison Wesley, 1957, p. 60; 169; 173.zbMATHGoogle Scholar
  269. [1]
    Kantorovich, L.V., Vulikh, B.Z. and Pinsker, A.G.: Functional analysis in semi-ordered spaces, Moscow-Leningrad, 1950Google Scholar
  270. [A1]
    Luxemburg, W.A.J. and Zaanen, A.C.: Theory of Riesz spaces, 1, North-Holland, 1972.Google Scholar
  271. [1]
    Lyapunov, A.M.: Stability of motion, Acad. Press, 1966 (translated from the Russian).zbMATHGoogle Scholar
  272. [2]
    Bylov, B.F., Vinograd, R.E., Grobman, D.M. and Nemytski, V.V.: The theory of the Lyapunov exponent and its application to questions of stability, Moscow, 1966 (in Russian).Google Scholar
  273. [3]
    Izobov, N.A.: ‘Linear systems of ordinary differential equations’, J. Soviet Math. 5, no. 1 (1976), 46–96. (Itogi Nauk. i Tekhn. Mat. Anal. 12, no. 1 (1974), 71–146)CrossRefMathSciNetzbMATHGoogle Scholar
  274. [A1]
    Munroe, M.E.: Introduction to measure and integration, Addison Wesley, 1953, p. 111.zbMATHGoogle Scholar
  275. [1]
    Hall, M.: The theory of groups, Macmillan, 1959.zbMATHGoogle Scholar
  276. [A1]
    Coxeter, H.S.M.: Regular complex polytopes, Cambridge Univ. Press, 1990, Chapt. 1.Google Scholar
  277. [1]
    Enzyklopädie der Elementarmathematik, 4. Geometrie, Deutsch. Verlag Wissenschaft, (translated from the Russian).Google Scholar
  278. [2]
    Lyusternik, L.A.: Convex figures and polyhedra, Moscow, 1956 (in Russian).Google Scholar
  279. [3]
    Shklyarskiǐ, D.O., Chentsov, N.N. and Yaglom, I.M.: The USSR Olympiad book: selected problems and theorems of elementary mathematics, Freeman, 1962 (translated from the Russian).Google Scholar
  280. [4]
    Coxeter, H.S.M.: Regular complex polytopes, Cambridge Univ. Press, 1990.Google Scholar
  281. [A1]
    Grünbaum, B.: ‘Regular polyhedra — old and new’, Aequat. Math. 16 (1970), 1–20.CrossRefGoogle Scholar
  282. [A2]
    Senechal, M. and Flede, G. (eds.): Shaping space, Birkäuser, 1988.zbMATHGoogle Scholar
  283. [A3]
    Saffaro, L.: ‘Dai cinqui poliedri platonici all’infinito’, Encicl. Sci. e Tecn. Mondadori 76 (1976), 474–484.Google Scholar
  284. [A4]
    Fejes Toth, L.: Regular figures, Pergamon, 1964 (translated from the German).zbMATHGoogle Scholar
  285. [A1]
    Shanks, D.: Solved and unsolved problems in number theory, Chelsea, reprint, 1978.zbMATHGoogle Scholar
  286. [A1]
    Curtis, C.W. and Reiner, I.: Methods of representation theory, 1–2, Wiley (Interscience), 1981–1987.zbMATHGoogle Scholar
  287. [1]
    Zariski, O. and Samuel, P.: Commutative algebra, 2, Springer, 1975.zbMATHGoogle Scholar
  288. [2]
    Serre, J.-P.: Algèbre locale. Multiplicités, Springer, 1965.zbMATHGoogle Scholar
  289. [3]
    Grothendieck, A. and Dieudonné, J.: ‘Eléments de géométrie algébrique. I. Le langage des schémas’, Publ. Math. IHES 4 (1964).Google Scholar
  290. [1]
    Bourbaki, N.: Algèbre commutative, Masson, 1983.zbMATHGoogle Scholar
  291. [2]
    Dauns, J. and Hofmann, K.: ‘The representation of biregular rings by sheaves’, Math. Z. 91 (1966), 103–123.CrossRefMathSciNetzbMATHGoogle Scholar
  292. [3]
    Lambek, J.: Lectures on rings and modules, Blaisdell, 1966.zbMATHGoogle Scholar
  293. [4]
    Skornyakov, L.A.: Complemented modular lattices and regular rings, Oliver & Boyd, 1962 (translated from the Russian).Google Scholar
  294. [5]
    Faith, C.: Algebra, 1–2, Springer, 1973–1976.zbMATHGoogle Scholar
  295. [6]
    Tsukerman, G.M.: ‘Ring of endomorphisms of a free module’, Sib. Math. J. 7, no. 5 (1966), 923–927. (Sibirsk. Mat. Zh. 7, no. 5 (1966), 1161–1167)CrossRefzbMATHGoogle Scholar
  296. [7]
    Shaǐn, B.M.: ‘O-rings and LA-rings’, Izv. Vyssh. Uchebn. Mat., no. 2 (1966), 111–122 (in Russian).Google Scholar
  297. [8]
    Goodearl, K.R.: Von Neumann regular rings. Pitman, 1979.Google Scholar
  298. [9]
    Kaplansky, I.: Rings of operators, Benjamin, 1968.Google Scholar
  299. [10]
    Neumann, J. von: Continuous geometries, Princeton Univ.Google Scholar
  300. [A1]
    Whitney, H.: ‘On the abstract properties of linear dependence’, Amer. J. Math. 57 (1935), 509–533. (Reprinted in: Joseph P.S. Kung (ed.), A source book in matroid theory, Birkhäuser, 1986, pp. 55–80).CrossRefMathSciNetGoogle Scholar
  301. [A2]
    Aigner, M.: Combinatorial theory, Springer, 1979, Chapt. II (translated from the German).CrossRefzbMATHGoogle Scholar
  302. [A3]
    Koppelberg, S.: ‘General theory of Boolean algebras’, in J.D. Monk and R. Bonnet (eds.): Handbook of Boolean Algebras, Vol. 1, North-Holland, 1989, p. 283.Google Scholar
  303. [A4]
    Myers, D. de: ‘Lindenbaum — Tarski algebras’, in J.D. Monk and R. Bonnet (eds.): Handbook of Boolean Algebras, Vol. 3, North-Holland, 1989, pp. 1167–1195.Google Scholar
  304. [1]
    Abhyankar, S.S.: ‘On the problem of resolution of singularities’, in I.G. Petrovskiǐ (ed.): Proc. Internat. Congress of Mathematicians Moscow, 1966, Moscow, 1968, pp. 469–481.Google Scholar
  305. [2]
    Mumford, D.: Lectures on curves on an algebraic surface, Princeton Univ. Press, 1966.zbMATHGoogle Scholar
  306. [3]
    Hironaka, H.: ‘Resolution of singularities of an algebraic variety over a field of characteristic zero I, II’, Ann. of Math. 79 (1964), 109–203; 205–326.CrossRefMathSciNetzbMATHGoogle Scholar
  307. [A1]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.zbMATHGoogle Scholar
  308. [1]
    Clifford, A. and Preston, G.: Algebraic theory of semigroups, 1–2, Amer. Math. Soc, 1961–1967.zbMATHGoogle Scholar
  309. [2]
    Munn, W.D.: ‘Regular co-semigroups’, Glasgow Math. J. 9, no. 1 (1968), 46–66.CrossRefMathSciNetzbMATHGoogle Scholar
  310. [3]
    Clifford, A.: ‘The fundamental representation of a regular semigroup’, Semigroup Forum 10 (1975), 84–92.CrossRefMathSciNetzbMATHGoogle Scholar
  311. [4]
    Clifford, A.: ‘A structure theorem for orthogroups’, J. Pure Appl. Algebra 8 (1976), 23–50.CrossRefMathSciNetzbMATHGoogle Scholar
  312. [5]
    Nambooripad, K.S.S.: ‘Structure of regular semigroups, I’, Mem. Amer. Math. Soc. 22, no. 224 (1979).Google Scholar
  313. [6]
    Nambooripad, K.S.S.: ‘The natural partial order on a regular semigroup’, Proc. Edinburgh Math. Soc. 23, no. 3 (1980), 249–260.CrossRefMathSciNetzbMATHGoogle Scholar
  314. [7]
    Nambooripad, K.S.S. and Rajan, A.R.: ‘Structure of combinatorial regular semigroups’, Quart. J. Math. 29, no. 116 (1978), 489–504.CrossRefMathSciNetzbMATHGoogle Scholar
  315. [8]
    Grillet, P.A.: ‘The structure of regular semigroups, I-IV’, Semigroup Forum 8 (1974), 177–183; 254–265; 368–373.CrossRefMathSciNetzbMATHGoogle Scholar
  316. [9]
    Hall, T.E.: ‘Orthodox semigroups’, Pacific. J. Math. 39 (1971), 677–686.MathSciNetzbMATHGoogle Scholar
  317. [10]
    Hall, T.E.: ‘On regular semigroups’, J. of Algebra 24 (1973), 1–24.CrossRefzbMATHGoogle Scholar
  318. [11]
    Meakin, J. and Nambooripad, K.S.S.: ‘Coextensions of pseudo-inverse semigroups by rectangular bands’, J. Austral. Math. Soc. 30 (1980/81), 73–86.CrossRefMathSciNetzbMATHGoogle Scholar
  319. [12]
    Warne, R.J.: ‘Natural regular semigroups’, in G. Pollák (ed.): Algebraic Theory of Semigroups, North-Holland, 1979, pp. 685–720.Google Scholar
  320. [13]
    Lallement, G.: ‘Structure theorems for regular semigroups’, Semigroup Forum 4 (1972), 95–123.CrossRefMathSciNetzbMATHGoogle Scholar
  321. [1]
    Dunford, N. and Schwartz, J.: Linear operators. 1. General theory. Wiley. 1988.Google Scholar
  322. [2]
    Aleksandrov, A.D.: ‘Additive set-functions in abstract spaces’. Mat. Sb. 9 (1941), 563–628 (in Russian).zbMATHGoogle Scholar
  323. [1]
    Goiubev, V.V.: Vorlesungen über Differentialgleichungen im Komplexen. Deutsch. Verlag Wissenschaft., 1958 (translated from the Russian).Google Scholar
  324. [2]
    Coddington, H.A. and Lhytnson, N.: Theory of ordinary differential equations, McGraw-Hill. 1955.zbMATHGoogle Scholar
  325. [3]
    Levelt, A.H.M.: ‘Hypergeometric functions I-IV’, Proc. Koninkl. Nederl. Akad. Wet. Set: A 64. no. 4 (1961). 362–403.Google Scholar
  326. [4]
    Deligne, P.: Equations différentielles à points singuliers réguliers, Lecture notes in math., 163, Springer, 1970.zbMATHGoogle Scholar
  327. [5]
    Plemelj, J.: Problems in the sense of Riemann and Klein, Wiley, 1964.zbMATHGoogle Scholar
  328. [6]
    Arnol’d, V.I. and Il’yashenko, Yu.S.: Ordinary differential equations, Encycl. math. sci., 1, Springer, Forthcoming (translated from the Russian).Google Scholar
  329. [A1]
    Bateman, H. and Erdélyi, A.: Higher transcendental functions, 3. Automorphic functions, McGraw-Hill, 1955.zbMATHGoogle Scholar
  330. [1]
    Kelley, J.L.: General topology, Springer, 1975.zbMATHGoogle Scholar
  331. [2]
    Arkhangel’skiǐ, A.V. and Ponomarev, V.I.: Fundamentals of general topology: problems and exercises, Reidel, 1984 (translated from the Russian).Google Scholar
  332. [A1]
    Čech, E.: Topological spaces, Wiley, 1966, p. 492ff.zbMATHGoogle Scholar
  333. [1]
    Hardy, G.H.: Divergent series, Clarendon, 1949.zbMATHGoogle Scholar
  334. [2]
    Cooke, R.G.: Infinite matrices and sequence spaces, Macmillan, 1950.zbMATHGoogle Scholar
  335. [3]
    Kangro, G.F.: ‘Theory of summability of sequences and series’, J. Soviet Math. 5, no. 1 (1976), 1–45. (Itogi Nauk. i Tekhn. Mat. Anal. 12 (1974), 5–70)CrossRefzbMATHGoogle Scholar
  336. [4]
    Baron, S.: Introduction to theory of summation of series, Talin, 1977 (in Russian).Google Scholar
  337. [1]
    Borel, A.: Linear algebraic groups, Benjamin, 1969.zbMATHGoogle Scholar
  338. [2]
    Humphreys, J.E.: Linear algebraic groups, Springer, 1975.zbMATHGoogle Scholar
  339. [1]
    Toepiitz, O.: Prace Mat. Fiz. 22 (1911), 113–119.Google Scholar
  340. [2]
    Steinhaus, H.: ‘Some remarks on the generalization of the concept of limit’, in Sel. Math. Papers. Polish Acad. Sci., 1985, pp. 88–100.Google Scholar
  341. [3]
    Hardy, G.H.: Divergent series. Clarendon. 1949.zbMATHGoogle Scholar
  342. [4]
    Cooke, R.G.: Infinite matrices and sequence spaces, Macmillan, 1950zbMATHGoogle Scholar
  343. [A1]
    Hawking, S.W.: ‘Zeta function regularization of path integrals’, Comm. Math. Phys. 55 (1977), 133–148.CrossRefMathSciNetzbMATHGoogle Scholar
  344. [A2]
    Gamboa Saravi, R.E., Muschietti, M.A. and Solomin, J.E.: ‘On the quotient of the regularized determinant of two elliptic operators’, Comm. Math. Phys. 110 (1987), 641–654.CrossRefMathSciNetzbMATHGoogle Scholar
  345. [A3]
    Kress, R.: Linear integral equations, Springer, 1989, Chapt. 5.CrossRefzbMATHGoogle Scholar
  346. [A4]
    Treves, F.: Pseudodifferential and Fourier integral operators, 1–2, Plenum, 1980.zbMATHGoogle Scholar
  347. [1]
    Tikhonov, A.N. and Arsenin, V.Ya.: Solutions of ill-posed problems, Wiley, 1977 (translated from the Russian).zbMATHGoogle Scholar
  348. [2]
    Tikhonov, A.N.: ‘Solution of incorrectly formulated problems and the regularization method’, Soviet Math. Dokl. 4, no. 4 (1963), 1035–1038. (Dokl. Akad. Nauk SSSR 151, no. 3 (1963), 501–504)Google Scholar
  349. [3]
    Tikhonov, A.N.: ‘Regularization of incorrectly posed problems’, Soviet Math. Dokl. 4, no. 6 (1963), 1624–1627.(Dokl. Akad. Nauk SSSR 153, no. 1 (1963), 49–52)zbMATHGoogle Scholar
  350. [4]
    Lavrentiev, M.M. [M.M. Lavrent’ev]: Some improperly posed problems of mathematical physics, Springer, 1967 (translated from the Russian).CrossRefzbMATHGoogle Scholar
  351. [A1]
    Bertero, M. and Viano, G.: ‘On probabilistic methods for the solution of improperly posed problems’, Boll. Un. Mat. Ital. 15-B(1978), 483–508.MathSciNetGoogle Scholar
  352. [A2]
    Engl, H.W. and Groetsch, C.W. (eds.): Inverse and ill-posed problems, Acad. Pres, 1987.zbMATHGoogle Scholar
  353. [A3]
    Hilgers, J.: ‘On the equivalence of regularization and certain reproducing kernel Hilbert space approaches for solving first kind problems’, SIAM J. Numer. Anal. 13 (1976), 172–184.CrossRefMathSciNetzbMATHGoogle Scholar
  354. [A4]
    Hoerl, A. and Kennard, R.: ‘Ridge regression’, Tech-nometricsA2 (1970), 55–82.Google Scholar
  355. [A5]
    Hofmann, B.: Regularization for applied inverse and ill-posed problems, Teubner, 1986.zbMATHGoogle Scholar
  356. [A6]
    Louis, A.: Inverse und schlecht gestellte Probleme, Teubner, 1989.zbMATHGoogle Scholar
  357. [A7]
    Nashed, M.Z. and Wahba, G.: ‘Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind’, Math. Comp. 28 (1974), 69–80.CrossRefMathSciNetzbMATHGoogle Scholar
  358. [A8]
    Varah, J.: ‘A practical examination of some numerical methods for linear discrete ill-posed problems’, SIAM Rev. 21 (1979), 100–111.CrossRefMathSciNetzbMATHGoogle Scholar
  359. [A1]
    Mandelbrojt, S.: Séries adhérentes, régularisations des suites, applications, Gauthier-Villars, 1952.Google Scholar
  360. [A2]
    Siddigi, J.A.: ‘On the equivalence of classes of infinitely differentiable functions’, Soviet J. Contemp. Math. Anal. Arm. Acad. Sci. 19, no. 1 (1984), 18–29. (Izv. Akad. Nauk Arm. SSR Mat. 19, no. 1 (1984), 19–30)Google Scholar
  361. [A3]
    Koblitz, N.: p-adic numbers, p-adic analysis, and zetafunctions, Springer, 1977, Chapt. IV, §3–4.Google Scholar
  362. [1]
    Borevich, Z.I. and Shafarevich, I.R.: Number theory, Acad. Press, 1987 (translated from the Russian).zbMATHGoogle Scholar
  363. [2]
    Lang, S.: Algebraic number theory, Addison-Wesley, 1970.zbMATHGoogle Scholar
  364. [1]
    Reidemeister, K.: ‘Homotopieringe und Linsenräume’, Abh. Math. Sem. Univ. Hamburg 11 (1935), 102–109.CrossRefzbMATHGoogle Scholar
  365. [2]
    Franz, W.: ‘Ueber die Torsion einer Ueberdeckung’, J. Reine Angew. Math. 173 (1935), 245–254.Google Scholar
  366. [3]
    Rham, G. de: ‘Sur les nouveaux invariants de M. Reidemeister’, Mat. Sb. 1, no. 5 (1936), 737–743.zbMATHGoogle Scholar
  367. [4]
    Bass, H.: ‘K-theory and stable algebra’, Publ. Math. IHES 22 (1966), 358–426.Google Scholar
  368. [A1]
    Milnor, J.: ‘Whitehead torsion’, Bull. Amer. Math. Soc. 72 (1966), 358–426.CrossRefMathSciNetzbMATHGoogle Scholar
  369. [1]
    Vladimirov, V.S.: Methods of the theory of functions of many complex variables, M.I.T., 1966 (translated from the Russian).Google Scholar
  370. [2]
    Shabat, B.V.: Introduction to complex analysis, Moscow, 1985 (in Russian).Google Scholar
  371. [A1]
    Hörmander, L.: An introduction to complex analysis in several variables, North-Holland, 1973.zbMATHGoogle Scholar
  372. [A2]
    Range, R.M.: Holomorphic functions and integral represen tations in several complex variables, Springer, 1986.Google Scholar
  373. [A1]
    Bell, J. and Machover, M.: A course in mathematical logic, North-Holland, 1977.zbMATHGoogle Scholar
  374. [1]
    Müller, E.: Monatsh. Math und Physik 31 (1921), 3–19.CrossRefzbMATHGoogle Scholar
  375. [2]
    Norden, A.P.: ‘Sur l’inclusion des théories métriques et affines des surfaces dans la géométrie des systèmes spécifiques’, C.R. Acad. Sci. Paris 192 (1931), 135–137.Google Scholar
  376. [3]
    Norden, A.P.: ‘On the intrinsic geometry of second kind hypersurfaces in affine space’, Izv. Vyzov. Mat. 4 (1958), 172–183 (in Russian).MathSciNetGoogle Scholar
  377. [4]
    Norden, A.P.: Spaces with an affine connection, Moscow, 1976 (in Russian).Google Scholar
  378. [1]
    MacLane, S.: Homology, Springer, 1963.zbMATHGoogle Scholar
  379. [2]
    Moore, J.C. and Eilenberg, S.: Foundations of relative homological algebra, Amer. Math. Soc., 1965.Google Scholar
  380. [1]
    Sklyarenko, E.G.: Homology and cohomology of general spaces, Springer, Forthcoming (translated from the Russian).Google Scholar
  381. [A1]
    Spanier, E.H.: Algebraic topology, McGraw-Hill, 1966.zbMATHGoogle Scholar
  382. [A2]
    Switzer, R.M.: Algebraic topology — homotopy and homology, Springer, 1975.zbMATHGoogle Scholar
  383. [1]
    Tits, J.: ‘Sur la classification des groupes algébriques semisimples’, C.R. Acad. Sci. Paris 249 (1959), 1438–1440.MathSciNetzbMATHGoogle Scholar
  384. [2]
    Borel, A. and Tits, J.: ‘Groupes réductifs’, Publ. Math. IHES 27 (1965), 55–150.MathSciNetGoogle Scholar
  385. [3]
    Tits, J.: ‘Classification of algebraic simple groups’, in Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math., Vol. 9, Amer. Math. Soc., 1966, pp. 33–62.Google Scholar
  386. [A1]
    Kelley, J.L.: General topology, v. Nostrand, 1955, p. 50ff.zbMATHGoogle Scholar
  387. [A1]
    Alexandroff, P. [P.S. Aleksandrov] and Hopf, H.: Topologle, Chelsea, reprint, 1972, p. 33ff, 44ff.Google Scholar
  388. [A2]
    Kuratowski, K.: Introduction to set theory and topology, Pergamon, 1961, p. 128ff (translated from the French).Google Scholar
  389. [1]
    Zel’dovich, Ya.B. and Novikov, I.D.: Relativistic astrophysics, Moscow, 1967 (in Russian).Google Scholar
  390. [2]
    Zel’dovich, Ya.B. and Novikov, I.D.: Relativistic astrophysics I. Stars and relativity, Chicago, 1971 (translated from the Russian).Google Scholar
  391. [3]
    Zel’dovich, Ya.B. and Novikov, I.D.: Relativistic astrophysics II. Structure and evolution of the Universe, Chicago, 1983 (translated from the Russian).Google Scholar
  392. [4]
    Peebles, P.J.E.: Physical cosmology, Princeton Univ. Press, 1971.Google Scholar
  393. [5]
    Misner, C.W., Thorne, K.S. and Wheeler, J.A.: Gravitation, Freeman, 1973, Chapt. 30.Google Scholar
  394. [6]
    Lifshits, E.M.: ‘On the gravitational stability of the expanding universe’, Zh. Eksper. i Teor. Fiz. 16 (1946), 587–602 (in Russian). English abstract.Google Scholar
  395. [7]
    Belinskii, V.A., Lifshits, E.M. and Khalatnikov, I.M.: Uspekhi Fiz. Nauk 102 (1970), 463–500.Google Scholar
  396. [8]
    Braginski, V. A.: Uspekhi Fiz. Nauk 86 (1965), 433–446.Google Scholar
  397. [A1]
    Zeldovich, Ya.B., Ruzmaǐkin, A.A. and Sokoloff, D.D. [D.D. Sokolov]: Magnetic fields in astrophysics, Gordon & Breach, 1983 (translated from the Russian).Google Scholar
  398. [A2]
    Rees, M.J.: Phys. Rev. Letters 28 (1972), 1669–1671.CrossRefGoogle Scholar
  399. [A3]
    Penrose, R.: ‘Singularities and time-asymmetry’, in S. Hawking and W. Israel (eds.): General Relativity, an Einstein Centenary Survey, Cambridge Univ. Press, 1979, pp. 581–638.Google Scholar
  400. [A4]
    Landsberg, P.T. and Evans, D.E.: Mathematical cosmology, Clarendon Press, 1977.Google Scholar
  401. [A5]
    Hawking, S.W. and Ellis, G.F.R.: The large scale structure of space-time, Cambridge Univ. Press, 1973.CrossRefzbMATHGoogle Scholar
  402. [A6]
    Weinberg, S.: Gravitation and cosmology, Wiley, 1972.Google Scholar
  403. [A7]
    Chandrasekhar, S.: The mathematical theory of black holes, Oxford Univ. Press, 1983.zbMATHGoogle Scholar
  404. [A8]
    Ehlers, J. (ed.): Relativity theory and astrophysics, 1–3, Amer. Math. Soc., 1967.zbMATHGoogle Scholar
  405. [A9]
    Novikov, I.D. and Frolov, V.P.: Physics of black holes, Kluwer, 1989 (translated from the Russian).zbMATHGoogle Scholar
  406. [1]
    Landau, L.D. and Lifshitz, E.M.: The theory of fields, Pergamon, 1965 (translated from the Russian).Google Scholar
  407. [A1]
    Rindler, W.: Essential relativity, Springer, 1977.zbMATHGoogle Scholar
  408. [1]
    Landau, L.D. and Lifshitz, E.M.: Fluid mechanics, Pergamon, 1959 (translated from the Russian).Google Scholar
  409. [2]
    Zel’dovich, Ya.B. and Novikov, I.D.: Relativistic astrophysics, 1. Stars and relativity, Chicago, 1971 (translated from the Russian).Google Scholar
  410. [3]
    Zel’dovich, Ya.B. and Novikov, I.D.: Relativistic astrophysics, 2. Structure and evolution of the Universe, Chicago, 1983 (translated from the Russian).Google Scholar
  411. [4]
    Misner, C.W., Thorne, K.S. and Wheeler, J.A.: Gravitation, Freeman, 1973, Chapt. 22.Google Scholar
  412. [A1]
    Lichnerowicz, A.: Relativistic hydrodynamics and magnetohydrodynamics, Benjamin, 1967.zbMATHGoogle Scholar
  413. [A2]
    Anile, A. and Choquet-Bruhat, Y. (eds.): Relativistic fluid dynamics, Lecture notes in math., 1385, Springer, 1989.zbMATHGoogle Scholar
  414. [1]
    Fok, V.A.: Einstein’s theory and physical relativity, Moscow, 1967 (in Russian).Google Scholar
  415. [A1]
    Rindler, W.: Essential relativity, Springer, 1977.zbMATHGoogle Scholar
  416. [1]
    Landau, L.D. and Lifshitz, E.M.: Statistical physics, Pergamon, 1980 (translated from the Russian).Google Scholar
  417. [2]
    Misner, C.W., Thorne, K.S. and Wheeler, J.A.: Gravitation, Freeman, 1973.Google Scholar
  418. [3]
    Møller, C.: The theory of relativity, Clarendon Press, 1952.Google Scholar
  419. [A1]
    Yuen, CK.: Amer. J. Phys. 38 (1970), 246.CrossRefGoogle Scholar
  420. [A2]
    Anile, A. and Choquet-Bruhat, Y. (eds.): Relativistic fluid dynamics, Springer, 1989.zbMATHGoogle Scholar
  421. [A3]
    Kluitenberg, G.A. and Groot, S.R. de: ‘Relativistic thermodynamics of irreversible processes III’, Physica 20 (1954), 199–209.CrossRefMathSciNetGoogle Scholar
  422. [A4]
    Tolman, R.C.: Relativity, thermodynamics and cosmology, Clarendon Press, 1934.Google Scholar
  423. [A1]
    Rindler, W.: Essential relativity, Springer, 1977, Chapt. 1.zbMATHGoogle Scholar
  424. [A2]
    Sachs, R.K. and Wu, H.: General relativity for mathematicians, Springer, 1977.CrossRefzbMATHGoogle Scholar
  425. [A3]
    Eddington, A.S.: The mathematical theory of relativity, Cambridge Univ. Press, 1960.Google Scholar
  426. [A4]
    Trench, A.P.: Special relativity, Norton & Cy, 1968.Google Scholar
  427. [A5]
    Bergmann, P.G.: Introduction to the theory of relativity, Dover, reprint, 1976.Google Scholar
  428. [1]
    Einstein, A.: ‘Elektrodynamik bewegter Körper’, Ann. der Phys. 17 (1905), 891–921.CrossRefzbMATHGoogle Scholar
  429. [2]
    Einstein, A. and Infeld, L.: The evolution of physics, Simon & Schuster, 1962.Google Scholar
  430. [3]
    Minkowski, H.: ‘Raum und Zeit’, Phys. Z. 10 (1909), 104–111.Google Scholar
  431. [4]
    Landau, L.D. and Livschits, E.M.: The classical theory of fields, Pergamon, 1975 (translated from the Russian).Google Scholar
  432. [5]
    Feynman, R., Leighton, R. and Sands, M.: The Feynman lectures on physics, 2, Addison-Wesley, 1965.zbMATHGoogle Scholar
  433. [6]
    Pauli, W.: Relativitätstheorie, Teubner, 1921.Google Scholar
  434. [7]
    Synge, J.L.: Relativity: the general theory, North-Holland, 1960.zbMATHGoogle Scholar
  435. [8]
    Tolman, R.: Relativity, thermodynamics and cosmology, Clarendon Press, 1969.Google Scholar
  436. [9]
    Rashewski, P.K. [P.K. Rashevski]: Riemannsche Geometrie und Tensoranalyse, Deutsch. Verlag Wissenschaft., 1959 (translated from the Russian).Google Scholar
  437. [A1]
    Fock, V.A. [V.A. Fok]: The theory of space, time and gravitation, Macmillan, 1954 (translated from the Russian).Google Scholar
  438. [A2]
    Weyl, H.: Raum, Zeit, Materie, Springer, 1923.CrossRefGoogle Scholar
  439. [A3]
    Penrose, R.: The structure of space-time’, in C.M. DeWitt and J.A. Wheeler (eds.): Batelle Rencontre in Math. and Physics, Benjamin, 1968, pp. 121–235.Google Scholar
  440. [A4]
    Schouten, J.A.: Tensor analysis for physicists, Cambridge Univ. Press, 1951.zbMATHGoogle Scholar
  441. [A5]
    Eisenhart, L.P.: Riemannian geometry, Princeton Univ. Press, 1949.zbMATHGoogle Scholar
  442. [A6]
    Synge, J.L. and Schild, A.: Tensor calculus, Toronto Univ. Press, 1959.Google Scholar
  443. [A7]
    Sachs, R.K. and Wu, H.: General relativity for mathematicians, Springer, 1977.CrossRefzbMATHGoogle Scholar
  444. [A8]
    Lawden, D.F.: An introduction to tensor calculus and relativity, Methuen, 1962.zbMATHGoogle Scholar
  445. [A9]
    Eddington, A.S.: The mathematical theory of relativity, Cambridge Univ. Press, 1960.Google Scholar
  446. [A10]
    Einstein, A., et al.: The principle of relativity. A collection of original papers, Dover, reprint, 1952.Google Scholar
  447. [A11]
    Einstein, A.: The meaning of relativity, Princeton Univ. Press, 1956.Google Scholar
  448. [1]
    Young, D.M.: ‘Iterative methods for solving partial differential equations of elliptic type’, Trans. Amer. Math. Soc. 76, no. 1 (1954), 92–111.CrossRefMathSciNetzbMATHGoogle Scholar
  449. [2]
    Young, D.M.: Iterative solution of large linear systems, Acad. Press, 1971.zbMATHGoogle Scholar
  450. [3]
    Wasow, W. and Forsyth, J.: Finite-difference methods for partial differential equations, Wiley, 1960.zbMATHGoogle Scholar
  451. [4]
    Faddeev, D.K. and Faddeeva, V.N.: Computational methods of linear algebra, Freeman, 1963 (translated from the Russian).Google Scholar
  452. [5]
    Hageman, L.A. and Young, D.M.: Applied iterative methods, Acad. Press, 1981.zbMATHGoogle Scholar
  453. [1]
    Andronov, A.A., Vitt, A.A. and Khaǐkin, S.E.: Theory of oscillators, Dover, reprint, 1987 (translated from the Russian).Google Scholar
  454. [2]
    Landa, N.S.: Auto-oscillations in systems with a finite number of degrees of freedom, Moscow, 1980 (in Russian).Google Scholar
  455. [3]
    Romanovskii, Yu.M, Stepanova, N.V. and Chernavskiǐ, D.S.: Mathematical modelling in biophysics, Moscow, 1975 (in Russian).Google Scholar
  456. [4]
    Pol, B. van der: Phil Mag. Ser. 7 2, no. 11 (1926), 978–992.Google Scholar
  457. [5]
    Zheleztsov, N.A. and Rodygin, L.V.: Dokl. Akad. Nauk SSSR 81, no. 3 (1951), 391–394.Google Scholar
  458. [6]
    Anosov, D.V.: ‘Limit cycles of systems of differential equations with small parameters in front of the highest derivatives’, Mat. Sb. 50, no. 3 (1960), 299–334 (in Russian).MathSciNetGoogle Scholar
  459. [7]
    Doronitsyn, A.A.: ‘Asymptotic solution of van der Pol’s equation’, Prikl. Mat. i Mekh. 11, no. 3 (1947), 313–328 (in Russian). English abstract.Google Scholar
  460. [8]
    Zharov, M.I., Mishchenko, E.F. and Rozov, N.Kh.: ‘On some special functions and constants arising in the theory of relaxation oscillations’, Soviet Math. Dokl. 24, no. 3 (1981), 672–675. (Dokl. Akad. Nauk SSSR 261, no. 6 (1981), 1292–1296)zbMATHGoogle Scholar
  461. [9]
    Mishchenko, E.F. and Rozov, N.Kh.: Differential equations with small parameters and relaxation oscillations, Plenum, 1980 (translated from the Russian).zbMATHGoogle Scholar
  462. [10]
    Rozov, N.Kh.: ‘Asymptotic computation of solutions of systems of second-order differential equations close to discontinuous periodic solutions’, Soviet Math. Dokl. 3, no. 4 (1962), 932–934. (Dokl Akad. Nauk SSSR 145, no. 1 (1962), 38–40)zbMATHGoogle Scholar
  463. [11]
    Pontryagin, L.S.: ‘Asymptotic behaviour of solutions of systems of differential equations with a small parameter in front of the highest order derivatives’, Izv. Akad. Nauk SSSR Ser. Mat. 21, no. 5 (1957), 605–626 (in Russian).MathSciNetzbMATHGoogle Scholar
  464. [12]
    Mishchenko, E.F.: ‘Asymptotic calculation of periodic solutions of differential equations with small parameters in front of the derivatives’, Izv. Akad. Nauk SSSR Ser. Mat. 21, no. 5 (1957), 627–654 (in Russian).MathSciNetzbMATHGoogle Scholar
  465. [13]
    Levi, M.: Qualitative analysis of the periodically forced relaxation oscillations, Amer. Math. Soc., 1981.Google Scholar
  466. [A1]
    Grasman, J.: Asymptotic methods for relaxation oscillations and applications, Springer, 1987.CrossRefzbMATHGoogle Scholar
  467. [A2]
    Callot, J.L., Diener, F. and Diener, M.: ’Le problème de la “chasse au canard”‘, C.R. Acad. Sci. Paris A286 (1987), 1059–1061.MathSciNetGoogle Scholar
  468. [A3]
    Chang, K.W. and Howes, F.A.: Nonlinear singular perturbation phenomena: theory and application, Springer, 1984.CrossRefGoogle Scholar
  469. [A4]
    Eckhaus, W.: Asymptotic analysis of singular perturbations, North-Holland, 1979.zbMATHGoogle Scholar
  470. [A5]
    O’Malley, R.E., Jr.: Introduction to singular perturbations, Acad. Press, 1974.zbMATHGoogle Scholar
  471. [A6]
    Levinson, N.: ‘Perturbations of discontinuous solutions of nonlinear systems of differential equations’, Acta Math. 82 (1950), 71–106.CrossRefMathSciNetzbMATHGoogle Scholar
  472. [A7]
    Lebovitz, N.R. and Schaar, R.: ‘Exchange of stabilities in autonomous systems’, Studies Appl. Math. 54 (1975), 229–260.MathSciNetzbMATHGoogle Scholar
  473. [A8]
    Levin, J. and Levinson, N.: ‘Singular perturbations of nonlinear systems of differential equations and an associated boundary layer equation’, J. Rat. Mech. Anal. 3 (1954), 247–270.MathSciNetzbMATHGoogle Scholar
  474. [A9]
    Takens, F.: ‘Constrained equations: a study of implicit differential equations and their discontinuous solutions’, in P. Hilton (ed.): Structural Stability, the Theory of Catastrophes, and Applications in the Sciences, Springer, 1976, pp. 143–234.CrossRefGoogle Scholar
  475. [A10]
    Sastry, S.S., Desoer, C.A. and Varaiya, P.P.: ‘Jump behaviour of circuits and systems’, IEEE Trans. Circuits and Systems (1980).Google Scholar
  476. [A11]
    Nayfeh, A.: Perturbation methods, Wiley, 1973.zbMATHGoogle Scholar
  477. [A12]
    Rabinovich, M.I. and Trubetskov, D.I.: Oscillations and waves in linear and nonlinear systems, Kluwer, 1989 (translated from the Russian).zbMATHGoogle Scholar
  478. [1]
    Shannon, C.: ‘A symbolic analysis of relay and switching circuits’, AIEE Trans. 57 (1938), 713–723.Google Scholar
  479. [2]
    Gavrilov, M.A.: Relaisschalttechnik, Deutsch. Verlag Wissenschaft., 1953 (translated from the Russian).Google Scholar
  480. [3]
    Shestakov, V.I.: ‘On a logical calculus applicable to the theory of relay-contact circuits’, Uchen. Zap. Moskov. Gosudarstv. Univ. Mat. 73, no. 5 (1944), 45–48 (in Russian).Google Scholar
  481. [4]
    Lupanov, O.B.: ‘Complexity of relay-contact circuits realization by functions of the algebra of logic’, Probl. Kibernetiki 11 (1964), 25–47 (in Russian).MathSciNetGoogle Scholar
  482. [1]
    Chegis, I.A. and Yablonskii, S.V.: ‘Logical means for controlling the functioning of electric systems’, Trudy Mat. Inst. Steklov. 51 (1958), 270–360 (in Russian).MathSciNetzbMATHGoogle Scholar
  483. [2]
    Solov’ev, N.A.: Tests, Novosibirsk, 1978 (in Russian).zbMATHGoogle Scholar
  484. [3]
    Potapov, Yu.G. and Yablonskii, S.V.: ‘On the synthesis of self-correcting relay circuits’, Soviet Phys. Dokl. 5 (1961), 932–935. (Dokl. Akad. Nauk SSSR 134, no. 3 (1960), 544–547)Google Scholar
  485. [4]
    Neumann, J. von: ‘Probabilistic logics and the synthesis of reliable organisms from unreliable components’, in Automata Studies, Princeton Univ. Press, 1956, pp. 43–98.Google Scholar
  486. [5]
    Moore, E.F. and Shannon, CE.: ‘Reliable circuits using less reliable relays I, II’, J. Franklin Inst. 262 (1956), 198–208;MathSciNetGoogle Scholar
  487. [5]
    Moore, E.F. and Shannon, CE.: ‘Reliable circuits using less reliable relays I, II’, J. Franklin Inst. 262 (1956), 281–297CrossRefMathSciNetGoogle Scholar
  488. [1]
    Barzilovich, E.Yu. and Kashtanov, V.A.: Some mathematical problems in the theory of maintenance of complex systems, Moscow, 1971 (in Russian).Google Scholar
  489. [2]
    Barlow, R.E. and Proschan, F.: Mathematical theory of reliability, Wiley, 1965.zbMATHGoogle Scholar
  490. [3]
    Barlow, R.E. and Proschan, F.: Statistical theory of reliability and lifetesting. Holt, Rinehart & Winston, 1975.Google Scholar
  491. [4]
    Gnedenko, B.V., Belyaev, Yu.K. and Solov’ev, A.D.: Mathematical methods of reliability theory, Acad. Press, 1969 (translated from the Russian).zbMATHGoogle Scholar
  492. [5]
    Kovalenko, I.N.: Studies in the analysis of reliability of complex systems, Kiev, 1975 (in Russian).Google Scholar
  493. [6]
    Kozlov, B.A. and Ushakov, I.A.: Reliability handbook, Holt, Rinehart & Winston, 1970 (translated from the Russian).Google Scholar
  494. [7]
    Shor, Ya.B.: Statistical methods in analysis and control of quality and reliability, Moscow, 1962 (in Russian).Google Scholar
  495. [A1]
    Gertsbakh, I.B.: Statistical reliability theory, Birkhäuser, 1989 (translated from the Russian).zbMATHGoogle Scholar
  496. [A2]
    Pieruschka, E.: Principles of reliability, Prentice-Hall, 1963.zbMATHGoogle Scholar
  497. [A3]
    Pierce, W.H.: Failure tolerant computer design, Acad. Press, 1965.Google Scholar
  498. [A4]
    Beichelt, F. and Franken, P.: Zuverlässigkeit und Instandhaltung, VEB Verlag Technik, 1983.Google Scholar
  499. [A1]
    Bleistein, N. and Handelsman, R.A.: Asymptotic expansions of integrals, Dover, reprint, 1986,Chapts. 1, 3, 5.Google Scholar
  500. [A2]
    Davis, P.J.: Interpolation and approximation, Dover, reprint, 1975.zbMATHGoogle Scholar
  501. [A3]
    Spivak, M.: Calculus, Benjamin, 1967.zbMATHGoogle Scholar
  502. [A1]
    Inasaridze, H.N.: ‘A generalization of perfect mappings’, Soviet Math. Dokl. 7, no. 3 (1966), 620–622. (Dokl. Akad. Nauk SSSR 168 (1966), 266–268)zbMATHGoogle Scholar
  503. [1]
    Vinogradov, I.M.: Elements of number theory, Dover, reprint, 1954 (translated from the Russian).zbMATHGoogle Scholar
  504. [A1]
    Hardy, G.H. and Wright, E.M.: An introduction to the theory of numbers, Oxford Univ. Press, 1979.zbMATHGoogle Scholar
  505. [1]
    Zoretti, L.: Leçons sur le prolongement analytique, Gauthier-Villars, 1911.zbMATHGoogle Scholar
  506. [2]
    Ahlfors, L.V.: ‘Bounded analytic functions’, Duke Math. J. 14, no. 1 (1947), 1–11.CrossRefMathSciNetzbMATHGoogle Scholar
  507. [3]
    Nohiro, K.: Cluster sets, Springer, 1960.Google Scholar
  508. [4]
    Khavinson, S.Ya.: ‘Analytic functions of bounded type’, Itogi Nauk. Mat. Anal. 1963 (1965), 5–80 (in Russian).Google Scholar
  509. [5]
    Carleson, L.: Selected problems on exceptional sets, v. Nostrand, 1967.zbMATHGoogle Scholar
  510. [6]
    Mel’nikov, M.S. and Sinanyan, S.O.: ‘Aspects of approximation theory for functions of one complex variable’, J. Soviet Math. 5, no. 5 (1976), 688–752. (Itogi Nauk. i Tekhn. Sovremen. Probl. Mat. 4 (1975), 143–250)CrossRefzbMATHGoogle Scholar
  511. [7]
    Shabat, B.V.: Introduction to complex analysis, 2, Moscow, 1985 (in Russian).Google Scholar
  512. [8]
    Hayman, W.K. and Kennedy, P.B.: Subharmonic functions, 1, Acad. Press, 1976.zbMATHGoogle Scholar
  513. [9]
    Dolzhenko, E.P.: ‘Elimination of singularities of analytic functions’, Uspekhi Mat. Nauk 18, no. 4 (1963), 135–142 (in Russian).Google Scholar
  514. [10]
    Riihentaus, L.J.: ‘Removable singularities of analytic functions of several complex variables’, Math. Z. 158 (1978), 45–54.CrossRefMathSciNetzbMATHGoogle Scholar
  515. [A1]
    Gunning, R.C. and Rossi, H.: Analytic functions of several complex variables, Prentice-Hall, 1965.zbMATHGoogle Scholar
  516. [A2]
    Harvey, R. and Polking, J.: ‘Removable singularities of solutions of linear partial differential equations’, Acta Math. 125(1970), 39–55.CrossRefMathSciNetzbMATHGoogle Scholar
  517. [A3]
    Garnett, J.B.: Analytic capacity and measure, Springer, 1972.zbMATHGoogle Scholar
  518. [A4]
    Chirka, E.M.: Complex analytic sets, Kluwer, 1989 (translated from the Russian).zbMATHGoogle Scholar
  519. [A1]
    Markushevich, A.I.: Theory of functions of a complex variable, 1, Chelsea, 1977 (translated from the Russian).zbMATHGoogle Scholar
  520. [1]
    Bethe, H.A.: ‘The electromagnetic shift of energy levels’, Phys. Rev. 72 (1947), 339–341.CrossRefGoogle Scholar
  521. [2A]
    Bogolyubov, N.N. and Parasyuk, O.S.: ‘On the theory of multiplication of causal singular functions’, Dokl. Akad. Nauk SSSR 100, no. 1 (1955), 25–28 (in Russian).MathSciNetzbMATHGoogle Scholar
  522. [2B]
    Bogolyubov, N.N. and .Parasyuk, O.S: ‘On the subtractive formalism in multiplication of causal singular functions’, Dokl. Akad. Nauk SSSR 100, no. 3 (1955), 429–432 (in Russian).MathSciNetzbMATHGoogle Scholar
  523. [3]
    Zavialov, O.I. [O.I. Zav’yalov]: Renormalized quantum field theory, Kluwer, 1990 (translated from the Russian).zbMATHGoogle Scholar
  524. [A1]
    Hepp, K.: Théorie de la renormalisation, Lecture notes in physics, 2, Springer, 1969.Google Scholar
  525. [A2]
    Manoukian, E.B.: Renormalization, Acad. Press, 1983.zbMATHGoogle Scholar
  526. [1]
    Rényi, A.: ‘On the theory of order statistics’, Acta Math. Acad. Sci. Hungar. 4 (1953), 191–231.CrossRefMathSciNetzbMATHGoogle Scholar
  527. [2]
    Hájek, J. and Sidák, Z.: Theory of rank tests, Acad. Press, 1967.zbMATHGoogle Scholar
  528. [3]
    Bol’shev, L.N. and Smirnov, N.V.: Tables of mathematical statistics, Libr. of mathematical tables, 46, Nauka, Moscow, 1983 (in Russian). Processed by L.S. Bark and E.S. Kedrova.zbMATHGoogle Scholar
  529. [1]
    Il’in, V.A. and Poznyak, E.G.: Fundamentals of mathematical analysis, 1–2, Mir, 1982 (translated from the Russian).Google Scholar
  530. [2]
    Kolmogorov, A.N. and Fomin, S.V.: Elements of the theory of functions and functional analysis, 1–2, Graylock, 1957–1961 (translated from the Russian).Google Scholar
  531. [3]
    Kudryavtsev, L.D.: A course in mathematical analysis, 2, Moscow, 1981 (in Russian).Google Scholar
  532. [4]
    Nikol’skii, S.M.: A course of mathematical analysis, 2, Mir, 1977 (translated from the Russian).zbMATHGoogle Scholar
  533. [5]
    Smirnov, V.L.: A course of higher mathematics, 5, Addison-Wesley, 1964 (translated from the Russian).Google Scholar
  534. [A1]
    Hewitt, E. and Stromberg, K.: Heal and abstract analysis, Springer, 1965.CrossRefGoogle Scholar
  535. [A2]
    Rudin, W.: Real and complex analysis, McGraw-Hill, 1978.Google Scholar
  536. [A3]
    Saks, S.: Theory of the integral, Hafner, 1952 (translated from the Polish).Google Scholar
  537. [A4]
    Apostol, T.M.: Mathematical analysis, Addison-Wesley, 1974.zbMATHGoogle Scholar
  538. [A5]
    Halmos, P.R.: Measure theory, Springer, 1974.zbMATHGoogle Scholar
  539. [A6]
    Zaanen, A.C.: Integration, North-Holland, 1974.Google Scholar
  540. [A1]
    Knopp, K.: Theorie und Anwendung der unendlichen Reihen, Springer, 1964. (Incomplete English translation: Blackie, 1928).zbMATHGoogle Scholar
  541. [A1]
    Bahtia, N.P. and Szegö, G.P.: Stability theory of dynamical systems, Springer, 1970.Google Scholar
  542. [A2]
    Guckenheimer, J. and Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, 1983.zbMATHGoogle Scholar
  543. [A3]
    Ruelle, D.: ‘Small random perturbations of dynamical systems and the definition of attractors’, Comm. Math. Phys. 82 (1981), 137–151.CrossRefMathSciNetzbMATHGoogle Scholar
  544. [1]
    Mal’tsev, A.I.: Algebraic systems, Springer, 1973 (translated from the Russian).zbMATHGoogle Scholar
  545. [1]
    Serre, J.P.: Lie algebras and Lie groups, Benjamin, 1965.zbMATHGoogle Scholar
  546. [2]
    Théorie des algébres de Lie. Topologie des groupes de Lie, Sem. S. Lie 1954/55, Secr. Math. Univ. Paris, 1955.Google Scholar
  547. [3]
    Chevalley, C.: Théorie des groupes de Lie, 2, Hermann, 1951.Google Scholar
  548. [A1]
    Bourbaki, N.: Groupes et algèbres de Lie, Hermann, 1975, Chapts. 7–8.zbMATHGoogle Scholar
  549. [1]
    Artin, M.: Algebraic spaces, Yale Univ. Press, 1971.zbMATHGoogle Scholar
  550. [2]
    Grothendieck, A. and Dieudonné, J.: Éléments de géométrie algébrique, I. Le langage des schémes, Springer, 1971.zbMATHGoogle Scholar
  551. [A1]
    MacLane, S.:Categories for the working mathematician, Springer, 1971.Google Scholar
  552. [A2]
    Grothendieck, A. and Dieudonné, J.: ‘Eléments de géometrie algébriques III’, Publ. Math. IHES 11 (1961), 349–356.Google Scholar
  553. [A3]
    Grothendieck, A.: ‘Fondements de la géométrie algébrique’, Sém. Bourbaki 195; 221; 232 (1960–1962).Google Scholar
  554. [A4]
    Artin, M.: ‘Algebraization of formal moduli, I’, in D.C. Spencer and S. Lyanaga (eds.): Global Analysis (papers in honor of K. Kodaira), Princeton Univ. Press, 1969, pp. 21–72.Google Scholar
  555. [1]
    Cartan, E.: ‘Sur la détermination d’un système orthogonal complet dans un espace de Riemann symmétrique clos’, Rend Circ. Mat. Palermo 53 (1929), 217–252.CrossRefGoogle Scholar
  556. [2]
    Van Cha Dao: ‘Spherical sections on a compact homogeneous space’, Uspekhi Mat. Nauk 30, no. 5 (1975), 203–204 (in Russian).zbMATHGoogle Scholar
  557. [3]
    Dzyadyk, Yu.V.: ‘On the determination of the spectrum of an induced representation on a compact symmetric space’, Soviet Math. Dokl. 16 (1975), 193–197. (Dokl. Akad. Nauk SSSR 220, no. 5 (1975), 1019–1022)zbMATHGoogle Scholar
  558. [4]
    Lukatskii, A.M.: Uspekhi Mat. Nauk 26, no. 5 (1971), 212–213.Google Scholar
  559. [5]
    Onishchik, A.L.: ‘On invariants and almost invariants of compact transformation groups’, Trans. Moscow Math. Soc. 35 (1976), 237–267. (Trudy Moskov. Mat. Obshch. 35 (1976), 235–264)Google Scholar
  560. [A1]
    Helgason, S.: Groups and geometric analysis, Acad. Press, 1984.zbMATHGoogle Scholar
  561. [1]
    Pontryagin, L.S.: Topological groups, Princeton Univ. Press, 1958 (translated from the Russian).Google Scholar
  562. [2]
    Naǐmark, M.A.: Theory of group representations, Springer, 1982 (translated from the Russian).CrossRefGoogle Scholar
  563. [3]
    Zhelobenko, D.P.: Compact Lie groups and their representations, Amer. Math. Soc., 1973 (translated from the Russian).zbMATHGoogle Scholar
  564. [4]
    Lang, S.: SL2(R), Addison-Wesley, 1975.zbMATHGoogle Scholar
  565. [5]
    Gel’fand, I.M., Graev, M.I. and Pyatetskii-Shapiro, I.I.: Generalized functions, 6. Representation theory and automorphic functions, Saunders, 1969 (translated from the Russian).Google Scholar
  566. [6]
    Serre, J.-P.: Abelian l-adic representations and elliptic curves, Benjamin (translated from the French).Google Scholar
  567. [7]
    Chevalley, C.: Theory of Lie groups, 1, Princeton Univ. Press, 1946.zbMATHGoogle Scholar
  568. [A1]
    Bourbaki, N.: Groupes et algèbres de Lie, Eléments de mathématique, Masson, 1982, Chapt. 9. Groupes de Lie réels compacts.zbMATHGoogle Scholar
  569. [A2]
    Bröcker, Th. and Tom Dieck T.: Representations of compact Lie groups, Springer, 1985.zbMATHGoogle Scholar
  570. [A3]
    Hewitt, E. and Ross, K.A.: Abstract harmonic analysis, II, Springer, 1970.zbMATHGoogle Scholar
  571. [A4]
    Wawrzynczyk, A.: Group representations and special functions, Reidel & PWN, 1984.zbMATHGoogle Scholar
  572. [1]
    Zhelobenko, D.P.: Compact Lie groups and their representations, Amer. Math. Soc., 1973 (translated from the Russian).zbMATHGoogle Scholar
  573. [2]
    Kirillov, A.A.: Elements of the theory of representations, Springer, 1976 (translated from the Russian).CrossRefzbMATHGoogle Scholar
  574. [3]
    Naǐmark, M.A.: Theory of group representations, Springer, 1982 (translated from the Russian).CrossRefGoogle Scholar
  575. [4]
    Zhelobenko, D.P. and Shtern, A.I.: Representations of Lie groups, Moscow, 1981 (in Russian).Google Scholar
  576. [A1]
    Benson, D.: Modular representation theory: New trends and methods, Lecture notes in math., 1081, Springer, 1984.zbMATHGoogle Scholar
  577. [A2]
    Curtis, C.W. and Reiner, I.: Methods of representation theory, I-II, Wiley (Interscience), 1981–1987.zbMATHGoogle Scholar
  578. [A3]
    Feit, W.: The representation theory of finite groups, North-Holland, 1982.zbMATHGoogle Scholar
  579. [A4]
    Serre, J.-P.: Linear representations of finite groups, Springer, 1977.zbMATHGoogle Scholar
  580. [A5]
    Huppert, B.: Endliche Gruppen, I, Springer, 1967.CrossRefzbMATHGoogle Scholar
  581. [A6]
    Knapp, A.W.: Representation theory of semisimple groups, Princeton Univ. Press, 1986.zbMATHGoogle Scholar
  582. [A7]
    Tits, J.: Tabellen zu den einfachen Lie Grupppen und ihren Darstellungen, Lecture notes in math., 40, Springer, 1967.Google Scholar
  583. [A8]
    Warner, G.: Harmonic analysis on semisimple Lie groups, 1–2, Springer, 1972.Google Scholar
  584. [1]
    Bourbaki, N.: Elements of mathematics. Lie groups and Lie algebras, Addison-Wesley, 1975 (translated from the French).zbMATHGoogle Scholar
  585. [2]
    Dixmier, J.: Enveloping algebras, North-Holland, 1977 (translated from the French).Google Scholar
  586. [3]
    Jacobson, N.: Lie algebras, Interscience, 1962.zbMATHGoogle Scholar
  587. [4]
    Mil’ner, A.A.: ‘Maximal degree of irreducible Lie algebra representations over a field of positive characteristic’, Funct. Anal. Appl. 14, no. 2 (1980), 136–137. (Funkts. Anal. i Prilozhen. 14, no. 2 (1980), 67–68)CrossRefMathSciNetzbMATHGoogle Scholar
  588. [5]
    Serre, J.-P.: Lie algebras and Lie groups, Benjamin, 1965 (translated from the French).Google Scholar
  589. [6]
    Théorie des algèbres de Lie. Topologie des groupes de Lie, Sem. S. Lie 1954/55, Secr. Math. Univ. Paris, 1955.Google Scholar
  590. [7]
    Zassenhaus, H.: The representations of Lie algebras of prime characteristic’, Froc. Glasgow Math. Assoc. 2 (1954), 1–36.CrossRefMathSciNetzbMATHGoogle Scholar
  591. [8]
    Veǐsfeǐler, B.Yu. and Kats, V.G.: ‘Irreducible representations of Lie p-algebras’, Fund. Anal. Appl. 5, no. 2 (1971), 111–117. (Funkts. Anal. i Prilozhen. 5, no. 2 (1971), 28–36)CrossRefGoogle Scholar
  592. [9]
    Jantzen, J.C.: ‘Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und Lie-Algebren’, Math. Z. 140, no. 1 (1974), 127–149.CrossRefMathSciNetGoogle Scholar
  593. [10]
    Rudakov, A.N.: ‘On the representation of the classical Lie algebras in characteristic p’, Math. USSR Izv. 4 (1970), 741–749. (Izv. Akad. Nauk SSSR Ser. Mat. 34, no. 4 (1970), 735–743CrossRefzbMATHGoogle Scholar
  594. [A1]
    Humphreys, J.E.: Introduction to Lie algebras and representation theory, Springer, 1972.CrossRefzbMATHGoogle Scholar
  595. [A2]
    Jantzen, J.C.: Einhüllende Algebren halbeinfacher Lie-Algebren, Springer, 1983.zbMATHGoogle Scholar
  596. [A1]
    Kleiner, M.M.: ‘Partially ordered sets of finite type’, J. Soviet Math. 3 (1975), 607–615. (Zap. Nauchn. Sem. Leningr. Otdel. Mat. Inst. 28 (1972), 32–41)CrossRefMathSciNetGoogle Scholar
  597. [A2]
    Kleiner, M.M.: ‘On the exact representations of partially ordered sets of finite type’, J. Soviet Math. 3 (1975), 616–628. (Zap. Nauchn. Sem. Lenlngr. Otdel. Mat. Inst. 28 (1972), 42–60)CrossRefMathSciNetGoogle Scholar
  598. [A3]
    Nazarova, L.A.: ‘Partially ordered sets of infinite type’, Math. USSR Izv. 9, no. 5 (1975), 911–938. (Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 963–991).CrossRefMathSciNetGoogle Scholar
  599. [1]
    Clifford, A.H. and Preston, G.B.: The algebraic theory of semigroups, 1–2, Amer. Math. Soc., 1961–1967.zbMATHGoogle Scholar
  600. [2]
    Vagner, V.V.: ‘Representations of ordered semi-groups’, Mat. Sb. 38, no. 2 (1956), 203–240 (in Russian).MathSciNetGoogle Scholar
  601. [3]
    Lyapin, E.S.: ‘Representations of semi-groups by partial mappings’, Mat. Sb. 52, no. 1 (1960), 589–596 (in Russian).MathSciNetGoogle Scholar
  602. [4]
    Shaǐn, B.M.: ‘Representations of semi-groups by binary relations’, Mat. Sb. 60, no. 3 (1963), 293–303 (in Russian).MathSciNetGoogle Scholar
  603. [5A]
    McAlister, D.B.: ‘Representations of semigroups by linear transformations I’, Semi-group Forum 2, no. 3 (1971), 189–263.CrossRefMathSciNetzbMATHGoogle Scholar
  604. [5B]
    McAlister, D.B.: ‘Representations of semigroups by linear transformations IF, Semi-group Forum 2, no. 4 (1971), 283–320.CrossRefMathSciNetzbMATHGoogle Scholar
  605. [6]
    Jónsson, B.: Topics in universal algebra, Springer, 1972.zbMATHGoogle Scholar
  606. [1]
    Barut, A. and Raczka, R.: Theory of group representations and applications, 1–2, PWN, 1977.Google Scholar
  607. [2]
    Vilenkin, N.Ya.: Special functions and the theory of group representations, Amer. Math. Soc., 1968 (translated from the Russian).zbMATHGoogle Scholar
  608. [3]
    Gel’fand, I.M., Graev, M.I. and Pyatetskiï-Shapiro, I.I.: Generalized functions, Saunders, 1969 (translated from the Russian).Google Scholar
  609. [4]
    Jaquet, E. and Langlands, R.: Automorphic forms on GL 2, 1–2, Springer, 1970–1972.Google Scholar
  610. [5]
    Zhelobenko, D.P.: Compact Lie groups and their representations, Amer. Math. Soc., 1973 (translated from the Russian).zbMATHGoogle Scholar
  611. [6]
    Zhelobenko, D.P.: Harmonic analysis of functions on semisimple complex Lie groups, Moscow, 1974 (in Russian).Google Scholar
  612. [7]
    Zhelobenko, D.P. and Shtern, A.I.: Representations of Lie groups, Moscow, 1983 (in Russian).zbMATHGoogle Scholar
  613. [8]
    Kirillov, A.A.: Elements of the theory of representations, Springer, 1976 (translated from the Russian).CrossRefzbMATHGoogle Scholar
  614. [9]
    Klimyk, A.U.: Matrix elements and Clebsch — Gordon coefficients of group representations, Kiev, 1979 (in Russian).Google Scholar
  615. [10]
    Lang, S.: SL2(R), Addison-Wesley, 1975.zbMATHGoogle Scholar
  616. [11]
    Naǐmark, M.A.: Normed rings, Reidel, 1984 (translated from the Russian).Google Scholar
  617. [12]
    Naǐmark, M. A.: Theory of group representations, Springer, 1982 (translated from the Russian).CrossRefGoogle Scholar
  618. [13]
    Gaal, S.A.: Linear analysis and representation theory, Springer, 1973.zbMATHGoogle Scholar
  619. [14]
    Gel’fand, I.M. (ed.): Lie groups and their representations, Hilger, 1975.Google Scholar
  620. [15]
    Mackey, G.W.: Unitary group representations in physics, probability and number theory, Benjaming/Cummings, 1978.zbMATHGoogle Scholar
  621. [16]
    Carmona, J. and Vergne, M. (ed.): Non-commutative harmonic analysis, Lecture notes in math., 728, Springer, 1979.zbMATHGoogle Scholar
  622. [1]
    Bondarenko, V.M. and Drozd, Yu.A.: ‘Representation type of finite groups’, J. Soviet Math. 20, no. 6 (1982), 2515–2528.CrossRefzbMATHGoogle Scholar
  623. [1a]
    Bondarenko, V.M. and Drozd, Yu.A.: ‘Representation type of finite groups’, (Zap. Nauchn. Sem. Leningr. Univ. 71 (1977), 24–41)MathSciNetzbMATHGoogle Scholar
  624. [2]
    Kruglyak, S.A.: ‘Representations of algebras the square of whose radical equals zero’, J. Soviet Math. 3, no. 5 (1975), 629–636.CrossRefzbMATHGoogle Scholar
  625. [2]
    Kruglyak, S.A.: ‘Representations of algebras the square of whose radical equals zero’, (Zap. Nauchn. Sem. Leningr. Univ. 28 (1972), 60–69)zbMATHGoogle Scholar
  626. [3]
    Curtis, C.W. and Reiner, I.: Representation theory of finite groups and associative algebras, Interscience, 1962.zbMATHGoogle Scholar
  627. [4]
    Nazarova, L.A.: ‘Representations of quivers of infinite type’, Math. USSR Izv. 7, no. 4 (1973), 749–792.Google Scholar
  628. [4a]
    Nazarova, L.A.: ‘Representations of quivers of infinite type’, (Izv. Akad. Nauk SSSR Ser. Mat. 37, no. 4 (1973), 752–791)MathSciNetzbMATHGoogle Scholar
  629. [5]
    Fischbacher, U.: ‘Une nouvelle preuve d’un théorème de Nazarova et Roĭter’, C. R. Acad. Sci. Paris 300 (1984), 259–263.MathSciNetGoogle Scholar
  630. [6]
    Bautista, R., Gabriel, P., Roĭter, A. and Salmeron, L.: ‘Representation finite algebras and multiplicative bases’, Invent. Math. 81 (1985), 217–285.CrossRefMathSciNetzbMATHGoogle Scholar
  631. [7]
    Roĭter, A.V.: ‘Unbounded dimensionality of indecomposable representations of an algebra with an infinite number of indecomposable representations’, Math. USSR Izv. 2, no. 6 (1968), 1223–1230.CrossRefGoogle Scholar
  632. [7a]
    Roĭter, A.V.: ‘Unbounded dimensionality of indecomposable representations of an algebra with an infinite number of indecomposable representations’, (Izv. Akad. Nauk SSSR Ser. Mat. 32, no. 6 (1968), 1275–1282)MathSciNetzbMATHGoogle Scholar
  633. [8]
    Dlab, V. and Ringel, C.: Indecomposable representations of graphs and algebras, Amer. Math. Soc., 1976.Google Scholar
  634. [9]
    Donovan, P. and Freislich, M.R.: The representation theory of finite graphs and associated algebras, Carleton Univ., 1974.Google Scholar
  635. [10]
    Gabriel, P.: Unzerlegbare Darstellungen F, Manuscripta Math. 6, no. 1 (1972), 71–103.CrossRefMathSciNetzbMATHGoogle Scholar
  636. [A1]
    Auslander, M.: ‘Applications of morphisms determined by objects’, in R. Gordon (ed.): Representation Theory of Algebras, M. Dekker, 1978, pp. 245–327.Google Scholar
  637. [A2]
    Auslander, M. and Reiten, I.: ‘Representation theory of Artin algebras III’, Comm. in Algebra (1975), 239–294.Google Scholar
  638. [A3]
    Bautista, R.: ‘On algebras of strongly unbounded representation type’, Comment. Math. Helv. 60 (1985), 392–399.CrossRefMathSciNetzbMATHGoogle Scholar
  639. [A4]
    Bongartz, K.: ‘A criterion for finite representation type’, Math. Ann. 269 (1984), 1–12.CrossRefMathSciNetzbMATHGoogle Scholar
  640. [A5]
    Bongartz, K.: ‘Indecomposables are standard’, Comment. Math. Helv. 60 (1985), 400–410.CrossRefMathSciNetzbMATHGoogle Scholar
  641. [A6]
    Bongartz, K. and Gabriel, P.: ‘Covering spaces in representation theory’, Invent. Math. 65 (1981), 381–387.MathSciNetGoogle Scholar
  642. [A7]
    Drozd, Yu.A.: ‘Tame and wild matrix problems’, in V. Dlab and P. Gabriel (eds.): Representation Theory II, Lecture notes in math., Vol. 832, Springer, 1980, pp. 242–258.CrossRefGoogle Scholar
  643. [A8]
    Dräxler, P.: ‘U-Fasersummen in darstellungsendlichen Algebren’, J. Algebra 113 (1988), 430–437.CrossRefMathSciNetzbMATHGoogle Scholar
  644. [A9]
    Happel, D. and Vossieck, D.: ‘Minimal algebras of infinite representation type with preprojective component’, Manuscripta Math. 42 (1983), 221–243.CrossRefMathSciNetzbMATHGoogle Scholar
  645. [A10]
    Happel, D., Preiser, U. and Ringel, C.M.: ‘Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules’, in V. Dlab and P. Gabriel (eds.): Representation Theory II, Lecture notes in math., Vol. 832, Springer, 1980, pp. 280–294.CrossRefGoogle Scholar
  646. [A11]
    Nazarova, L.A. and Roïter, A.V.: Categorical matrix problems and the Brauer-Thrall conjecture, Kiev, 1973 (in Russian).Google Scholar
  647. [A12]
    Ringel, C.M. and Tachikawa, H.: ‘QF-3 rings’, J. Reine Angew. Math. 272 (1975), 49–72.MathSciNetzbMATHGoogle Scholar
  648. [A13]
    Riedtmann, Chr.: ‘Algebren, Darstellungsköcher, Überlagerungen, und zurück’, Comment. Math. Helv. 55 (1980), 199–224.CrossRefMathSciNetzbMATHGoogle Scholar
  649. [A14]
    Ringel, C.M.: Tame algebras and integral quadratic forms, Lecture notes in math., 1099, Springer, 1984.zbMATHGoogle Scholar
  650. [A15]
    Happel, D.: Triangulated categories in representation theory of finite dimensional algebras, London Math. Soc., 1988.CrossRefzbMATHGoogle Scholar
  651. [1]
    Kirillov, A.A.: Elements of the theory of representations, Springer, 1976 (translated from the Russian).CrossRefzbMATHGoogle Scholar
  652. [2]
    Plotkin, B.P.: Groups of automorphisms of algebraic systems, Wolters-Noordhoff, 1972 (translated from the Russian).zbMATHGoogle Scholar
  653. [1]
    Markov, A.A.: ‘On an unsolvable problem concerning matrices’, Dokl. Akad. Nauk SSSR 78, no. 6 (1951), 1089–1092 (in Russian).zbMATHGoogle Scholar
  654. [2]
    Markov, A.A.: Theory of algorithms, Israel Progr. Sci. Transi., 1961 (translated from the Russian). Also: Trudy Mat. Inst. Steklov. 42 (1954).Google Scholar
  655. [3]
    Markov, A.A.: ‘On the problem of presenting matrices’, Z. Math. Logik und Grundl. Math. 4 (1958), 157–168 (in Russian). German abstract.CrossRefzbMATHGoogle Scholar
  656. [4]
    Nagornyĭ, N.M.: 6-th All-Union Congress on Math. Logic, Tbilisi, 1982, p. 124 (in Russian).Google Scholar
  657. [5]
    Paterson, M.S.: ‘Unsolvability in 3 × 3 matrices’, Stud. in Appl. Math. 49, no. 1 (1970), 105–107.MathSciNetzbMATHGoogle Scholar
  658. [1]
    Weyl, H.: The classical groups, their invariants and representations, Princeton Univ. Press, 1946.zbMATHGoogle Scholar
  659. [2]
    Zhelobenko, D.P.: Compact Lie groups and their representations, Amer. Math. Soc., 1973 (translated from the Russian).zbMATHGoogle Scholar
  660. [3]
    Hamermesh, M.: Group theory and its application to physical problems, Addison-Wesley, 1962.zbMATHGoogle Scholar
  661. [A1]
    Carter, R.W. and Lustig, G.: ‘On the modular representations of the general linear and symmetric groups’, Math. Z. 136 (1974), 193–242.CrossRefMathSciNetzbMATHGoogle Scholar
  662. [A2]
    Green, J.A.: Polynomial representations of GL n, Lecture notes in math., 830, Springer, 1980.zbMATHGoogle Scholar
  663. [A3]
    James, G. and Kerber, A.: The representation theory of the symmetric group, Addison-Wesley, 1981.zbMATHGoogle Scholar
  664. [A4]
    Feit, W.: The representation theory of finite groups, North-Holland, 1982.zbMATHGoogle Scholar
  665. [1]
    Weyl, H.: The classical groups, their invariants and representations, Princeton Univ. Press, 1946.zbMATHGoogle Scholar
  666. [2]
    Murnagan, F.D.: The theory of group representations, J. Hopkins Univ. Press, 1938.Google Scholar
  667. [3]
    Hamermesh, M.: Group theory and its application to physical problems, ddison-Wesley, 1962.zbMATHGoogle Scholar
  668. [4]
    Curtis, C.W. and Reiner, I.: Representation theory of finite groups and associative algebras, Interscience, 1962.zbMATHGoogle Scholar
  669. [5]
    James, G.: The representation theory of the symmetric groups, Springer, 1978.zbMATHGoogle Scholar
  670. [A1]
    Liulevicius, A.: ‘Arrows, symmetries, and representation rings’, J. Pure Appl. Algebra 19 (1980), 259–273.CrossRefMathSciNetzbMATHGoogle Scholar
  671. [A2]
    Hazewinkel, M.: Formal rings and applications, Acad. Press, 1978.Google Scholar
  672. [A3]
    Atiyah, M.F.: ‘Power operations in K-theory’, Quarterly J. Math. (2) 17 (1966), 165–193.CrossRefMathSciNetzbMATHGoogle Scholar
  673. [A4]
    Knutson, D.: X-rings and the representation theory of the symmetric group, Springer, 1973.Google Scholar
  674. [A5]
    Zelevinsky, A.V.: Representations of finite classical groups, Springer, 1981.zbMATHGoogle Scholar
  675. [A6]
    Ravenel, D.C.: The Hopf ring for complex cobordism’, J. Pure Appl. Algebra 9 (1977), 241–280.CrossRefMathSciNetzbMATHGoogle Scholar
  676. [A7]
    Roman, S.: The umbral calculus, Acad. Press, 1984.zbMATHGoogle Scholar
  677. [A8]
    James, G. and Kerber, A.: The representation theory of the symmetric group, Addison-Wesley, 1981.zbMATHGoogle Scholar
  678. [A9]
    Robinson, G. de B.: Representation theory of the symmetric group, Univ. Toronto Press, 1961.zbMATHGoogle Scholar
  679. [A10]
    Green, J.A.: Polynomial representations of GL n, Lecture notes in math., 30, Springer, 1980.zbMATHGoogle Scholar
  680. [A1]
    Kirillov, A.A.: Elements of the theory of representations, Springer, 1976 (translated from the Russian).CrossRefzbMATHGoogle Scholar
  681. [A2]
    Curtis, C.W. and Reiner, J.: Representation theory of finite groups and associative algebras, Interscience, 1962.zbMATHGoogle Scholar
  682. [1]
    Jacobson, N.: Lie algebras, Interscience, 1962.zbMATHGoogle Scholar
  683. [2]
    Théorie des algèbres de Lie. Topologie des groupes de Lie, Sém. S. Lie, Secr. Math. Univ. Paris, 1955.Google Scholar
  684. [3]
    Zhelobenko, D.P.: Compact Lie groups and their representations, Amer. Math. Soc., 1973 (translated from the Russian).zbMATHGoogle Scholar
  685. [4]
    Cartan, E.: ‘Les tenseurs irréductibles et les groupes linéaires simples et semi-simples’, Bull. Sci. Math. 49 (1925), 130–152.Google Scholar
  686. [5]
    Harish-Chandra: ‘On some applications of the universal enveloping algebra of a semisimple Lie algebra’, Trans. Amer. Math. Soc. 70 (1951), 28–96.CrossRefMathSciNetzbMATHGoogle Scholar
  687. [1]
    Kargapolov, M.I. and Merzlyakov, Yu.I.: Fundamentals of the theory of groups, Springer, 1979 (translated from the Russian).CrossRefzbMATHGoogle Scholar
  688. [A1]
    Robinson, D.J.S.: A course in the theory of groups, Springer, 1982.CrossRefzbMATHGoogle Scholar
  689. [1]
    Mal’tsev, A.I.: ‘Homomorphisms onto finite groups’, Uchen. Zap. Ivanovsk. Ped. Inst. 18 (1958), 49–60(in Russian).Google Scholar
  690. [2]
    Golubov, E.A.: ‘Finitely approximate regular semi-groups’, Math. Notes 17, no. 3 (1975), 247–251.zbMATHGoogle Scholar
  691. [2a]
    Golubov, E.A.: ‘Finitely approximate regular semi-groups’, (Mat. Zam. 17, no. 3 (1975), 423–432)MathSciNetzbMATHGoogle Scholar
  692. [3]
    Golubov, E.A. and Sapir, M.V.: ‘Varieties of finitely approx-imable semigroups’, Soviet Math. Dokl. 20, no. 4 (1979), 828–832.Google Scholar
  693. [3a]
    Golubov, E.A. and Sapir, M.V.: ‘Varieties of finitely approx-imable semigroups’, (Dokl. Akad. Nauk SSSR 247, no. 5 (1979), 1037–1041)MathSciNetGoogle Scholar
  694. [4]
    Lallement, G.: ‘On nilpotency and residual finiteness in semigroups’, Pacific J. Math. 42, no. 3 (1972), 693–700.MathSciNetzbMATHGoogle Scholar
  695. [A1]
    Cohn, P.M.: Universal algebra, Reidel, 1981.Google Scholar
  696. [A1]
    Blyth, T.S. and Janowitz, M.F.: Residuation theory, Pergamon, 1972.zbMATHGoogle Scholar
  697. [A1]
    Aĭzenberg, L.A. and Yuzhakov, A.P.: Integral representations and residues in multidimensional complex analysis, Transi. Math. Monographs, 58, Amer. Math. Soc., 1983 (translated from the Russian).zbMATHGoogle Scholar
  698. [A2]
    Berenstein, CA., Gay, R. and Yger, A.: ‘Analytic continuation of currents and division problems’, Forum Math. (1989), 15–51.Google Scholar
  699. [A3]
    Griffith, Ph. and Harris, J.: Principles of algebraic geometry, Wiley, 1978.Google Scholar
  700. [A4]
    Passare, M. ‘Residues, currents and their relation to ideals of holomorphic functions’, Math. Scand. 62 (1988), 75–152.MathSciNetzbMATHGoogle Scholar
  701. [A5]
    Federer, H.: Geometric measure theory, Springer, 1969.zbMATHGoogle Scholar
  702. [A6]
    Harvey, R.: ‘Holomorphic chains and their boundaries’, in R.O. Wells, jr. (ed.): Several Complex Variables, Proc. Symp. Pure Math., Vol. 30:1, Amer. Math. Soc., 1977, pp. 309–382.Google Scholar
  703. [A7]
    Skoda, H.: ‘A survey of the theory of closed, positive currents’, in Y.-T. Siu (ed.): Complex Analysis of Several Variables, Vol. 41, Amer. Math. Soc., 1984, pp. 181–190.Google Scholar
  704. [A8]
    Chirka, E.M.: Complex analytic sets, Kluwer, 1989 (translated from the Russian).zbMATHGoogle Scholar
  705. [1]
    Markushevich, A.I.: Theory of functions of a complex variable, 1, Chelsea, 1977 (translated from the Russian).zbMATHGoogle Scholar
  706. [2]
    Evgrafov, M.A.: Analytic functions, Saunders, 1966 (translated from the Russian).zbMATHGoogle Scholar
  707. [3]
    Priwalow, I.I. [I.I. Privalov]: Einführung in die Funktionentheorie, 1–3, Teubner, 1958–1959 (translated from the Russian).Google Scholar
  708. [4]
    Shabat, B.V.: Introduction to complex analysis, 1–2, Moscow, 1985 (in Russian).Google Scholar
  709. [5]
    Springer, G.: Introduction to Riemann surfaces, Addison-Wesley, 1957.zbMATHGoogle Scholar
  710. [6]
    Poincaré, H.: ‘Sur les résidues des intégrales doubles’, Acta Math. 9 (1887), 321–380.CrossRefMathSciNetzbMATHGoogle Scholar
  711. [7]
    Leray, J.: ‘Le calcule différentiel et intégral sur une variété analytique complexe (Problème de Cauchy, III)’, Bull. Soc. Math. France 87 (1959), 81–180.MathSciNetzbMATHGoogle Scholar
  712. [8]
    Aĭzenberg, L.A. and Yuzhakov, A.P.: Integral representations and residues in multidimensional complex analysis, Amer. Math. Soc., 1983 (translated from the Russian).zbMATHGoogle Scholar
  713. [9]
    Tsikh, A.K.: Multidimensional residues and its applications, Amer. Math. Soc., Forthcoming (translated from the Russian).Google Scholar
  714. [10]
    Griffiths, P.A.: ‘On the periods of certain rational integrals I’, Ann. of Math. (2) 90, no. 3 (1969), 460–495.CrossRefzbMATHGoogle Scholar
  715. [11]
    Egorichev, G.P.: Integral representation and the computation of combinatorial sums, Amer. Math. Soc., 1984 (translated from the Russian).Google Scholar
  716. [12]
    Griffiths, P.A. and Harris, J.: Principles of algebraic geometry, Wiley (Interscience), 1978.zbMATHGoogle Scholar
  717. [13]
    Coleff, W.R. and Herrera, M.F.: Les courants residuals associés à une forme meromorphe, Lecture notes in math., 633, Springer, 1978.Google Scholar
  718. [A1]
    Mitrinovic, D.S. and Keckic, J.D.: The Cauchy method of residues: theory and applications, Reidel, 1984.zbMATHGoogle Scholar
  719. [A1]
    Grothendieck, A.: ‘Sur quelques points d’algèbre homologique’, Tohoku Math. J. 9 (1957), 119–221.MathSciNetzbMATHGoogle Scholar
  720. [A2]
    Lang, S.: Algebra, Addison-Wesley, 1984.zbMATHGoogle Scholar
  721. [A3]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.zbMATHGoogle Scholar
  722. [A4]
    André, M.: Méthode simpliciale en algèbre homologique et algèbre commutative, Lecture notes in math., 32, Springer, 1967.zbMATHGoogle Scholar
  723. [A5]
    Berthelot, P. and Ogus, A.: Notes on crystalline cohomology, Princeton Univ. Press, 1978.zbMATHGoogle Scholar
  724. [A6]
    Milne, J.S.: Etale cohomology, Princeton Univ. Press, 1980.zbMATHGoogle Scholar
  725. [A7]
    Cartan, H. and Eilenberg, S.: Homological algebra, Princeton Univ. Press, 1956.zbMATHGoogle Scholar
  726. [A8]
    MacLane, S.: Homology, Springer, 1963.zbMATHGoogle Scholar
  727. [A9]
    Godement, R.: Théorie des faisceaux, Hermann, 1964.Google Scholar
  728. [1]
    Abhyankar, S.S.: Resolution of singularities of embedded algebraic surfaces, Acad. Press, 1966.zbMATHGoogle Scholar
  729. [2]
    Lipman, J.: ‘Introduction to resolution of singularities’, in R. Hartshorne (ed.): Algebraic Geometry, Arcata 1974, Proc. Symp. Pure Math., Vol. 29, Amer. Math. Soc., 1975, pp. 187–230.Google Scholar
  730. [3]
    Hironaka, H.: ‘Resolution of singulariies of an algebraic variety over a field of characteristic zero I, II’, Ann. of Math. 79 (1964), 109–326.CrossRefMathSciNetzbMATHGoogle Scholar
  731. [1]
    Riesz, F. and Szökefalvi-Nagy, B.: Functional analysis, F. Ungar, 1955 (translated from the French).Google Scholar
  732. [2]
    Akhiezer, N.I. and Glazman, I.M.: Theory of linear operators in a Hilbert space, 1–2, F. Ungar, 1961–1963 (translated from the Russian).Google Scholar
  733. [3]
    Kantorovich, L.V. and Akilov, G.P.: Functional analysis in normed spaces, Pergamon, 1964 (translated from the Russian).zbMATHGoogle Scholar
  734. [1]
    Waerden, B.L. van der: Algebra, 1–2, Springer, 1967–1971 (translated from the German).zbMATHGoogle Scholar
  735. [1]
    Yosida, K.: Functional analysis, Springer, 1980.Google Scholar
  736. [2]
    Achiezer, N.I. [N.I. Akhiezer] and Glazman, I.M.: Theorie der linearen Operatoren im Hilbert Raum, Akad. Verlag, 1954 (translated from the Russian).Google Scholar
  737. [3]
    Kantorovich, L.V. and Akilov, G.P.: Functional analysis in normed spaces, Pergamon, 1964 (translated from the Russian).zbMATHGoogle Scholar
  738. [1]
    Riesz, F. and Szökevalfi-Nagy, B.: Leçons d’analyse fonctionelle, Akad. Kiado, 1952.Google Scholar
  739. [A1]
    Yoshida, K.: Functional analysis, Springer, 1978, p. 209ff.CrossRefGoogle Scholar
  740. [A2]
    Reed, M. and Simon, B.: Methods of modern mathematical physics, 1. Functional analysis, Acad. Press, p. 188, 253.Google Scholar
  741. [1]
    Strelkov, S.P.: Introduction to the theory of oscillations, Moscow-Leningrad, 1951 (in Russian).Google Scholar
  742. [A1]
    Arnol’d, V.I.: Ordinary differential equations, M.I.T., 1973 (translated from the Russian).Google Scholar
  743. [1]
    Bruno, A.D. [A.D. Bryuno]: Local methods in nonlinear differential equations, Springer, 1978 (translated from the Russian).Google Scholar
  744. [2A]
    Bruno, A.D. [A.D. Bryuno]: ‘The analytic form of differential equations’, Trans. Moscow Math. Soc. 25 (1971), 131–288.Google Scholar
  745. [2Aa]
    Bruno, A.D. [A.D. Bryuno]: ‘The analytic form of differential equations’, (Trudy Moskov. Mat. Obshch. 25 (1971), 119–262)Google Scholar
  746. [2B]
    Bruno, A.D. [A.D. Bryuno]: ‘The analytic form of differential equations’, Trans. Moscow Math. Soc. 26 (1972), 199–238.zbMATHGoogle Scholar
  747. [2Ba]
    Bruno, A.D. [A.D. Bryuno]: ‘The analytic form of differential equations’, (Trudy Moskov. Mat. Obshch. 26 (1972), 199–239)zbMATHGoogle Scholar
  748. [A1]
    Arnol’d, V.I.: Mathematical methods of classical mechanics, Springer, 1978 (translated from the Russian).Google Scholar
  749. [A2]
    Arnol’d, V.I.: Ordinary differential equations, M.I.T., 1973 (translated from the Russian).Google Scholar
  750. [A3]
    Arnol’d, V.I and Avez, A.: Ergodic problems of classical mechanics, Benjamin, 1968 (translated from the Russian).zbMATHGoogle Scholar
  751. [1]
    Kurosh, A.G.: Higher algebra, Mir, 1972 (translated from the Russian).zbMATHGoogle Scholar
  752. [2]
    Okunev, L.Y.: Higher algebra, Moscow-Leningrad, 1979 (in Russian).Google Scholar
  753. [3]
    Waerden, B.L. van der: Algebra, 1–2, Springer, 1967–1971 (translated from the German).zbMATHGoogle Scholar
  754. [4]
    Hodge, W.V.D. and Pedoe, D.: Methods of algebraic geometry, 1–3, Cambridge Univ. Press, 1947–1954.zbMATHGoogle Scholar
  755. [A1]
    Lang, S.: Algebra, Addison-Wesley, 1984.zbMATHGoogle Scholar
  756. [1]
    Bitsadze, A. V.: Equations of mathematical physics, Mir, 1980 (translated from the Russian).zbMATHGoogle Scholar
  757. [2]
    Bers, L., John, F. and Schechter, M.: Partial differential equations, Interscience, 1964.zbMATHGoogle Scholar
  758. [3]
    Vladimirov, V.S.: Equations of mathematical physics, Mir, 1984 (translated from the Russian).Google Scholar
  759. [4]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  760. [5]
    Pontryagin, L.S.: Ordinary differential equations, Addison-Wesley, 1962 (translated from the Russian).zbMATHGoogle Scholar
  761. [6]
    Tikhonov, A.N. and Samarskii, A.A.: Equations of mathematical physics, Pergamon, 1963 (translated from the Russian).zbMATHGoogle Scholar
  762. [1]
    Borsuk, K.: Theory of retracts, PWN, 1967.Google Scholar
  763. [A1]
    Shchepin, E.S.: ‘A finite-dimensional compact absolute neighborhood retract is metrizable’, Soviet Math. Doklady 18 (1977), 402–406.zbMATHGoogle Scholar
  764. [A1a]
    Shchepin, E.S.: ‘A finite-dimensional compact absolute neighborhood retract is metrizable’, (Dokl. Akad. Nauk SSSR 233, no. 3 (1977), 304–307)MathSciNetGoogle Scholar
  765. [A2]
    Mill, J. van: Infinite-dimensional topology, prerequisites and introduction, North-Holland, 1988.Google Scholar
  766. [A1]
    Batchelor, G.K.: An introduction to fluid dynamics, Cambridge Univ. Press, 1967, Sect. 4.7.zbMATHGoogle Scholar
  767. [A2]
    Vishik, M.I. and Fursikov, A.V.: Mathematical problems of statistical hydromechanics, Kluwer, 1988, Chapts. 3; 4; 6 (translated from the Russian).zbMATHGoogle Scholar
  768. [A3]
    Landau, L.D. and Lifshitz, E.M.: Fluid mechanics, Pergamon, 1959 (translated from the Russian).Google Scholar
  769. [A1]
    Rektorys, K.4: Applicable mathematics, Iliffe, 1969, p. 135.zbMATHGoogle Scholar
  770. [1]
    Finikov, S.P.: Projective-differential geometry, Moscow-Leningrad, 1937 (in Russian).Google Scholar
  771. [2]
    Finikov, S.P.: Theorie der Kongruenzen, Akademie-Verlag, 1959 (translated from the Russian).Google Scholar
  772. [1]
    Savelov, A.A.: Planar curves, Moscow, 1960 (in Russian).Google Scholar
  773. [2]
    Rashevskiĭ, P.K.: A course in differential geometry, Moscow, 1956 (in Russian).Google Scholar
  774. [A1]
    Gomes Teixeira, F.: Traité des courbes, 1–3, Chelsea, reprint, 1971.zbMATHGoogle Scholar
  775. [1]
    Riccati, J.: Opere, Treviso, 1758.Google Scholar
  776. [2]
    Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen, 1. Gewöhnliche Differentialgleichungen, Chelsea, reprint, 1971.Google Scholar
  777. [3]
    Erugin, N.P.: A reader for a general course in differential equations. Minsk, 1979 (in Russian).zbMATHGoogle Scholar
  778. [4]
    Erugin, N.P.: Linear systems of ordinary differential equations with periodic and quasi-periodic coefficients, Acad. Press, 1966 (translated from the Russian).zbMATHGoogle Scholar
  779. [5]
    Reid, W.T.: Riccati differential equations, Acad. Press, 1972.zbMATHGoogle Scholar
  780. [6]
    Kalman, R., Falb, P. and Arbib, M.: Topics in mathematical system theory, McGraw-Hill, 1969.zbMATHGoogle Scholar
  781. [7]
    Lions, J.-L.: Optimal control of systems governed by partial differential equations, Springer, 1971 (translated from the French).zbMATHGoogle Scholar
  782. [8]
    Zakhar-Itkin, M.K.: ‘The matrix Riccati differential equation and the semi-group of linear fractional transformations’, Russian Math. Surveys 28, no. 3 (1973), 89–131.CrossRefzbMATHGoogle Scholar
  783. [8a]
    Zakhar-Itkin, M.K.: ‘The matrix Riccati differential equation and the semi-group of linear fractional transformations’, (Uspekhi Mat. Nauk 28, no. 3 (1973), 83–120)MathSciNetGoogle Scholar
  784. [9]
    Schneider, C.R.: ‘Global aspects of the matrix Riccati equation’, Math Syst. Theory 7, no. 3 (1973), 281–286.CrossRefzbMATHGoogle Scholar
  785. [1]
    Gromoll, D., Klingenberg, W. and Meyer, W.: Riemannsche Geometrie im Grossen, Springer, 1968.zbMATHGoogle Scholar
  786. [2]
    Petrov, A.Z.: Einstein spaces, Pergamon, 1969 (translated from the Russian).zbMATHGoogle Scholar
  787. [A1]
    Hicks, N.: Notes on differential geometry, v. Nostrand, 1965.zbMATHGoogle Scholar
  788. [A2]
    Besse, A.L.: Einstein manifolds, Springer, 1987.zbMATHGoogle Scholar
  789. [1]
    Ricci, G. and Levi-Civita, T.: ‘Méthodes de calcul différentiel absolu et leurs applications’, Math. Ann. 54 (1901), 125–201.CrossRefzbMATHGoogle Scholar
  790. [2]
    Rashewski, P.K. [P.K. Rashevskiĭ]: Riemannsche Geometrie und Tensoranalyse, Deutsch. Verlag Wissenschaft., 1959 (translated from the Russian).Google Scholar
  791. [3]
    Eisenhart, L.P.: Riemannian geometry, Princeton Univ. Press, 1949.zbMATHGoogle Scholar
  792. [A1]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).zbMATHGoogle Scholar
  793. [A2]
    Hicks, N.J.: Notes on differential geometry, v. Nostrand, 1965.zbMATHGoogle Scholar
  794. [A3]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 1, Wiley (Interscience), 1963.zbMATHGoogle Scholar
  795. [1]
    Ricci, G.: Atti R. Inst. Venelo 53, no. 2 (1903–1904), 1233–1239.Google Scholar
  796. [2]
    Eisenhart, L.P.: Riemannian geometry, Princeton Univ. Press, 1239.Google Scholar
  797. [A1]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 1, Wiley (Interscience), 1963.zbMATHGoogle Scholar
  798. [1]
    Chern, S.S. and Osserman, R.: ‘Remarks on the Riemannian metrics of a minimal submanifold’, in E. Looijenga, D. Siersma and F. Takens (eds.): Geometry Symp. (Utrecht, 1980), Lecture notes in math., Vol. 894, Springer, 1981, pp. 49–90.CrossRefGoogle Scholar
  799. [1]
    Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stress in a masonry dam’, Philos. Trans. Roy. Soc. Ser. A 210 (1910), 307–357.CrossRefGoogle Scholar
  800. [2]
    Bulirsh, R. and Stoer, J.: ‘Fehlerabschätzungen und Extrapolation mit rationaler Funktionen bei Verfahren vom Richardson-Typus’, Numer. Math. 6, no. 5 (1964), 413–427.CrossRefMathSciNetGoogle Scholar
  801. [3]
    Joyce, D.C.: ‘Survey of extrapolation processes in numerical analysis’, SIAM Review 13, no. 4 (1971), 435–490.CrossRefMathSciNetzbMATHGoogle Scholar
  802. [4]
    Marchuk, G.I. and Shaĭdurov, V.V.: Difference methods and their extrapolations, Springer, 1983 (translated from the Russian).zbMATHGoogle Scholar
  803. [5]
    Bakhvalov, N.S.: Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).Google Scholar
  804. [A1]
    Hivie, T.: ‘Generalized Neville type extrapolation schemes’, BIT 9 (1979), 204–213.CrossRefGoogle Scholar
  805. [1]
    Rickart, C.E.: ‘Banach algebras with an adjoint operation’, Ann. of Math. 47 (1946), 528–550.CrossRefMathSciNetzbMATHGoogle Scholar
  806. [2]
    Berberian, S.K.: Baer*-rings, Springer, 1972.zbMATHGoogle Scholar
  807. [3]
    Kaplansky, I.: Rings of operators, Benjamin, 1968.zbMATHGoogle Scholar
  808. [4]
    Markov, V.T., Mikhalev, A.V., Skornyakov, L.A. and Tuganbaev, A.A.: ‘Modules’, J. Soviet Math. 23, no. 6 (1983), 2642–2707.CrossRefzbMATHGoogle Scholar
  809. [4a]
    Markov, V.T., Mikhalev, A.V., Skornyakov, L.A. and Tuganbaev, A.A.: ‘Modules’, (Itogi Nauk. i Tekn. Algebra Topol. Geom. 19 (1981), 31–134)MathSciNetGoogle Scholar
  810. [A1]
    Apostol, T.M.: Mathematical analysis, Blaisdell, 1957.zbMATHGoogle Scholar
  811. [A2]
    Riemann, B.: ‘Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe’, in Gesammelte math. Abhandlungen, Dover, reprint, 1957, pp. 227–264.Google Scholar
  812. [A3]
    Wolff, J.: Fourier’sche Reihen, Noordhoff, 1931.zbMATHGoogle Scholar
  813. [1]
    Riemann, B.: ‘Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe’, in Gesammelte math. Abhandlungen, Dover, reprint, 1957, pp. 227–264.Google Scholar
  814. [2]
    Bary, N.K. [N.K. Bari]: A treatise on trigonometric series, Pergamon, 1964 (translated from the Russian).zbMATHGoogle Scholar
  815. [1]
    Riemann, B.: ‘Über die Hypothesen, welche der Geometrie zugrunde liegen’, in Das Kontinuum und andere Monographien, Chelsea, reprint, 1973.Google Scholar
  816. [2]
    Efimov, N.V.: Higher geometry, MIR, 1980 (in Russian).zbMATHGoogle Scholar
  817. [3]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  818. [4]
    Kagan, V.F.: The foundations of geometry, 2, Moscow, 1956 (in Russian).Google Scholar
  819. [5]
    Bogomolov, S.A.: An introduction to Riemann’s non-Euclidean geometry, Moscow-Leningrad, 1934 (in Russian)Google Scholar
  820. [A1]
    Helmholtz, H.: ‘Über die Tatsachen, die der Geometrie zum Grunde liegen’, in Wissenschaftliche Abhandlungen, Vol. II, 1883, pp. 618–639.Google Scholar
  821. [A2]
    Coxeter, H.S.M.: Non-euclidean geometry, Univ. Toronto Press, 1965.Google Scholar
  822. [A3]
    Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, Springer, 1959.zbMATHGoogle Scholar
  823. [A4]
    Coxeter, H.S.M.: Introduction to geometry, Wiley, 1989.Google Scholar
  824. [A5]
    Gray, J.: Ideas of space, Oxford, 1989, Chapt. 14.zbMATHGoogle Scholar
  825. [A6]
    Manning, H.P.: Introductory non-Euclidean geometry, New York, 1963, Chapt. III.Google Scholar
  826. [A7]
    Veblen, O. and Young, J.W.: Projective geometry, II, Blaisdell, 1946, Chapt. VII.Google Scholar
  827. [A8]
    Berger, M.: Geometry, II, Springer, 1987, Chapt. 19 (translated from the French).Google Scholar
  828. [1]
    Riemann, B.: Collected works, Dover, reprint, 1953.Google Scholar
  829. [2]
    Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Chelsea, reprint, 1953.zbMATHGoogle Scholar
  830. [3]
    Plemelj, J.: ‘Riemannsche Funktionenscharen mit gegebenen Monodromiegruppe’, Monatsh. Math. Phys. 19 (1908), 211–245.CrossRefMathSciNetzbMATHGoogle Scholar
  831. [4]
    Privalov, LI.: ‘On a boundary problem in analytic function theory’, Mat. Sb. 41, no. 4 (1934), 519–526 (in Russian). French abstract.MathSciNetGoogle Scholar
  832. [5]
    Muskhelishvili, N.I.: Singular integral equations, Wolters-Noordhoff, 1972, Chapt. 2 (translated from the Russian).Google Scholar
  833. [6]
    Gakhov, F.D.: Boundary value problems, Pergamon, 1966 (translated from the Russian).zbMATHGoogle Scholar
  834. [A1]
    Rodin, Yu.L.: The Riemann boundary problem on Riemann surfaces, Reidel, 1988 (translated from the Russian).CrossRefzbMATHGoogle Scholar
  835. [1]
    Riemann, B.: Gesammelte mathematische Werke, Dover, reprint, 1953.zbMATHGoogle Scholar
  836. [2]
    Hurwitz, A.: ‘Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkte’, in Mathematische Werke, Vol. 1, Birkhäuser, 1932, pp. 321–383.Google Scholar
  837. [3]
    Hurwitz, A. and Courant, R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, 1, Springer, 1964.zbMATHGoogle Scholar
  838. [4]
    Nevanlinna, R.: Uniformisierung, Springer, 1967.zbMATHGoogle Scholar
  839. [5]
    Lang, S.: Introduction to algebraic and Abelian functions, Addison-Wesley, 1972.zbMATHGoogle Scholar
  840. [A1]
    Hartshorne, R.: Algebraic geometry, Springer, 1977, Sect. IV.2.zbMATHGoogle Scholar
  841. [A2]
    Griffiths, P. and Harris, J.: Principles of algebraic geometry, Wiley, 1978, pp. 216–219.zbMATHGoogle Scholar
  842. [A3]
    Hasse, H.: Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei eindlichem Konstantenkörper, Reine Angew. Math. 172 (1935), 37–54.Google Scholar
  843. [A4]
    Farkas, H.M. and Kra, I.: Riemann surfaces, Springer, 1980.zbMATHGoogle Scholar
  844. [A1]
    Ivic, A.: The Riemann zeta-function, Wiley, 1985.zbMATHGoogle Scholar
  845. [A2]
    Titchmarsh, E.C.: The theory of the Riemann zeta function, Clarendon Press, 1951.zbMATHGoogle Scholar
  846. [A3]
    Edwards, H.M.: Riemann’s zeta function, Acad. Press, 1974.zbMATHGoogle Scholar
  847. [A1]
    Heilbronn, H.: ‘Zeta-functions and L-functions’, in J.W.S. Casseis and A. Fröhlich (eds.): Algebraic number theory, Acad. Press, 1967, pp. 204–230.Google Scholar
  848. [A2]
    Narkiewicz, W.: Elementary and analytic theory of algebraic numbers, Springer & PWN, 1990, Chapt. 7, §1.zbMATHGoogle Scholar
  849. [1]
    Riemann, B.: ‘Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe’, in H. Weber (ed.): B. Riemann’s Gesammelte Mathematische Werke, Dover, reprint, 1953, pp. 227–271. (Original: Göttinger Akad. Abh. 13 (1868)).Google Scholar
  850. [2]
    Ilin, V.A. and Poznyak, E.G.: Fundamentals of mathematical analysis, 1–2, Mir, 1982 (translated from the Russian).Google Scholar
  851. [3]
    Kudryavtsev, L.D.: A course of mathematical analysis, 1–2, Moscow, 1988 (in Russian).Google Scholar
  852. [4]
    Nikol’skii, S.M.: A course of mathematical analysis, 1–2, Mir, 1977 (translated from the Russian).zbMATHGoogle Scholar
  853. [A1]
    Shilov, G.E.: Mathematical analysis, 1–2, MIT, 1974 (translated from the Russian).zbMATHGoogle Scholar
  854. [A2]
    Pesin, I.N.: Classical and modern integration theories, Acad. Press, 1970 (translated from the Russian).zbMATHGoogle Scholar
  855. [A3]
    Stromberg, K.: An introduction to classical real analysis, Wadsworth, 1981.zbMATHGoogle Scholar
  856. [A4]
    Rudin, W.: Principles of mathematical analysis, McGraw-Hill, 1976.zbMATHGoogle Scholar
  857. [1]
    Bitsadze, A.V.: Equations of mixed type, Moscow, 1959 (in Russian).zbMATHGoogle Scholar
  858. [2]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  859. [3]
    Smirnov, V.I.: A course of higher mathematics, Addison-Wesley, 1964 (translated from the Russian).Google Scholar
  860. [A1]
    Garabedian, P.R.: Partial differential equations, Wiley, 1963.Google Scholar
  861. [1]
    Borel, A. and Serre, J.-P.: ‘La théorème de Riemann —Roch’, Bull. Soc. Math. France 86 (1958), 97–136.MathSciNetzbMATHGoogle Scholar
  862. [2]
    Manin, Yu.L: ‘Lectures on the K-functor in algebraic geometry’, Russian Math. Surveys 24, no. 5 (1969), 1–89.CrossRefMathSciNetzbMATHGoogle Scholar
  863. [2a]
    Manin, Yu.L: ‘Lectures on the K-functor in algebraic geometry’, (Uspekhi Mat. Nauk 24, no. 5 (1969), 3–86)MathSciNetzbMATHGoogle Scholar
  864. [3]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.zbMATHGoogle Scholar
  865. [4]
    Hirzebruch, F.: Topological methods in algebraic geometry, Springer, 1978 (translated from the German).zbMATHGoogle Scholar
  866. [5]
    Baum, P., Fulton, W. and MacPherson, R.: ‘Riemann —Roch for singular varieties’, Publ. Math. IHES 45 (1975), 101–145.MathSciNetzbMATHGoogle Scholar
  867. [6]
    Baum, P., Fulton, W. and MacPherson, R.: ‘Riemann —Roch for topological K-theory and singular varieties’, Acta Math. 143, no. 3–4 (1979), 155–192.CrossRefMathSciNetzbMATHGoogle Scholar
  868. [7]
    Berthelot, P., et. al. (eds.): ‘Théorie des intersections et théorème de Riemann — Roch’, in Sem. Geom. Alg. 6, Lecture notes in math., Vol. 225, Springer, 1971.Google Scholar
  869. [A1]
    Lang, S.: Algebraic number theory, Addison-Wesley, 1970.zbMATHGoogle Scholar
  870. [A2]
    Szpiro, K.:Sem. sur les pinceaux arithmétiques: La conjecture de Mordeir, risque 127 (1985).Google Scholar
  871. [1]
    Lavrent’ev, M.A. and Shabat, B.V.: Methoden der komplexen Funktionentheorie, Deutsch. Verlag Wissenschaft., 1967 (translated from the Russian).Google Scholar
  872. [A1]
    Nehari, Z.: Conformai mapping, Dover, reprint, 1975.Google Scholar
  873. [A2]
    Nirenberg, L., Webster, S. and Yang, P.: ‘Local boundary regularity of holomorphic mappings’, Comm. Pure Appl. Math. 33 (1980), 305–338.CrossRefMathSciNetzbMATHGoogle Scholar
  874. [A3]
    Pinchuk, S.I. and Khasanov, S.V.: Asymptotically holomorphic functions and their applications’, Math. USSR-Sb. 62, no. 2 (1989), 541–550.(Mat. Sb. 134 (176) (1987), 546–555; 576)CrossRefMathSciNetzbMATHGoogle Scholar
  875. [A4]
    Carathéodory, C.: Theory of functions, 2, Chelsea, reprint, 1954.Google Scholar
  876. [A5]
    Ahlfors, L.V.: Complex analysis, McGraw-Hill, 1979.zbMATHGoogle Scholar
  877. [A6]
    Rudin, W.: Lectures on the edge-of-the-wedge theorem, Amer. Math. Soc., 1971.zbMATHGoogle Scholar
  878. [A1]
    Nitsche, J.C.C.: Vorlesungen über Minimalflächen, Springer, 1975.zbMATHGoogle Scholar
  879. [1]
    Shabat, B.V.: Introduction to complex analysis, 1–2, Moscow, 1976 (in Russian).Google Scholar
  880. [2]
    Fuks, B.A.: Introduction to the theory of analytic functions of several complex variables, Amer. Math. Soc., 1965 (translated from the Russian).Google Scholar
  881. [A1]
    Ahlfors, L.V.: Complex analysis, McGraw-Hill, 1979.zbMATHGoogle Scholar
  882. [1]
    Riemann, B.: ‘Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe’, in Gesammelte math. Abhandlungen, Dover, reprint, 1957, pp. 227–264.Google Scholar
  883. [2]
    Bary, N.K. [N.K. Bari]: A treatise on trigonometric series, Pergamon, 1964 (translated from the Russian).zbMATHGoogle Scholar
  884. [3]
    Zygmund, A.: Trigonometric series, 1–2, Cambridge Univ. Press, 1988.zbMATHGoogle Scholar
  885. [4]
    Hardy, G.H.: Divergent series, Clarendon, 1949.zbMATHGoogle Scholar
  886. [A1]
    Zeller, K. and Beekman, W.: Theorie der Limitierungsverfahren, Springer, 1970.zbMATHGoogle Scholar
  887. [1]
    Riemann, B.: Gesammelte mathematische Werke, Dover, reprint, 1953.zbMATHGoogle Scholar
  888. [2]
    Markushevich, A.I.: The theory of functions of a complex variable, 1–2, Chelsea, 1977 (translated from the Russian).Google Scholar
  889. [3]
    Hurwitz, A. and Courant, R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Springer, 1964.zbMATHGoogle Scholar
  890. [4]
    Stoĭlov, S.: The theory of functions of a complex variable, 1–2, Moscow, 1962 (in Russian and Rumanian).Google Scholar
  891. [5]
    Stoilow, S.: Leçons sur les principes topologiques de la théorie des fonctions analytiques, Gauthier-Villars, 1938.Google Scholar
  892. [6]
    Springer, G.: Introduction to Riemann surfaces, Chelsea, reprint, 1981.zbMATHGoogle Scholar
  893. [7]
    Nevanlinna, R.: Uniformisierung, Springer, 1967.zbMATHGoogle Scholar
  894. [8]
    Schiffer, M. and Spencer, D.C.: Functionals of finite Riemann surfaces, Princeton Univ. Press, 1954.zbMATHGoogle Scholar
  895. [9]
    Chebotarev, N.G.: The theory of algebraic functions, Moscow-Leningrad, 1948 (in Russian).Google Scholar
  896. [10]
    Volkovyskiî, L.I.: ‘Investigation of the type problem for a simply-connected Riemann surface’, Trudy Mat. Inst. Steklov. 34 (1950), 3–171 (in Russian).Google Scholar
  897. [11]
    Volkovyskiĭ, L.I.: ‘Contempory studies on Riemann surfaces’, Uspekhi Mat. Nauk 11, no. 5 (1956), 77–84 (in Russian).Google Scholar
  898. [12]
    Krushkal’, S.L.: Quasi-conformal mappings and Riemann surfaces, Winston & Wiley, 1979 (translated from the Russian).Google Scholar
  899. [13]
    Krushkal’, S.L., Apanasov, B.N. and Gusevskiĭ, N.A.: Kleinian groups and uniformization in examples and problems, Amer. Math. Soc., 1986 (translated from the Russian).Google Scholar
  900. [14]
    Vinberg, E.B. and Shvartsman, O.V.: ‘Riemann surfaces’, J. Soviet Math. 14, no. 1 (1980), 985–1020.CrossRefzbMATHGoogle Scholar
  901. [14a]
    Vinberg, E.B. and Shvartsman, O.V.: ‘Riemann surfaces’, (Itogi Nauk. i Tekhn. Algebra. Topol. Geom. 16 (1978), 191–245)MathSciNetGoogle Scholar
  902. [15A]
    Bers, L.: ‘Quasiconformal mappings and Teichmüller’s theorem’, in R. Nevanlinna, et al. (ed.): Analytic Functions, Princeton Univ. Press, 1960, pp. 89–119.Google Scholar
  903. [15B]
    Ahlfors, L.: ‘The complex analytic structure of the space of closed Riemann surfaces’, in R. Nevanlinna, et al. (ed.): Analytic Functions, Princeton Univ. Press, 1960, pp. 45–66.Google Scholar
  904. [15C]
    Bers, L.: ‘Spaces of Riemann surfaces’, in J. Todd (ed.): Proc. Internat. Congress Mathematicians Edinburgh, 1958, Cambridge Univ. Press, 1958, pp. 349–361.Google Scholar
  905. [15D]
    Bers, L.: ‘Simultaneous uniformization’, Bull. Amer. Math. Soc. 66 (1960), 94–97.CrossRefMathSciNetzbMATHGoogle Scholar
  906. [15E]
    Bers, L.: ‘Holomorphic differentials as functions of moduli’, Bull. Amer. Math. Soc. 67 (1961), 206–210.CrossRefMathSciNetzbMATHGoogle Scholar
  907. [15F]
    Ahlfors, L.: ‘On quasiconformal mappings’, J. d’Anal. Math. 3 (1954), 1–58; 207–208.CrossRefMathSciNetGoogle Scholar
  908. [16A]
    Bers, L.: ‘Uniformization, moduli, and Kleinian groups’, Bull. London Math. Soc. 4 (1972), 257–300.CrossRefMathSciNetzbMATHGoogle Scholar
  909. [16B]
    Bers, L.: ‘The moduli of Kleinian groups’, Russian Math. Surveys 29, no. 2 (1974), 88–102.CrossRefMathSciNetzbMATHGoogle Scholar
  910. [16Ba]
    Bers, L.: ‘The moduli of Kleinian groups’, (Uspekhi Mat. Nauk 29, no. 2 (1974), 86–102)MathSciNetzbMATHGoogle Scholar
  911. [17]
    Klein, F.: Riemannschen Flächen, Springer, reprint, 1986.Google Scholar
  912. [18]
    Weyl, H.: The concept of a Riemann surface, Addison-Wesley, 1955 (translated from the German).Google Scholar
  913. [19]
    Ahlfors, L.V. and Sario, L.: Riemann surfaces, Princeton Univ. Press, 1974.Google Scholar
  914. [20]
    Pfluger, A.: Theorie der Riemannschen Flächen, Springer, 1957.zbMATHGoogle Scholar
  915. [21]
    Sario, L. and Nakai, M.: Classification theory of Riemann surfaces. Springer, 1970.zbMATHGoogle Scholar
  916. [22]
    Heins, M.: Hardy classes on Riemann surfaces, Springer, 1969.zbMATHGoogle Scholar
  917. [23]
    Gunning, R.C.: Lectures on Riemann surfaces, Princeton Univ. Press, 1966.zbMATHGoogle Scholar
  918. [24]
    Gunning, R.C.: Lectures on Riemann surfaces: Jacobi varieties, Princeton Univ. Press, 1972.zbMATHGoogle Scholar
  919. [25]
    Forster, O.: Lectures on Riemann surfaces. Springer, 1981 (translated from the German).CrossRefzbMATHGoogle Scholar
  920. [A1]
    Griffiths, P. and Harris, J.: Principles of algebraic geometry, Wiley (Interscience), 1978.zbMATHGoogle Scholar
  921. [A2]
    Griffiths, P.: Introduction to algebraic curves, Amer. Math. Soc., 1989.zbMATHGoogle Scholar
  922. [A3]
    Farkas, H.M. and Kra, I.: Riemann surfaces, Springer, 1980.zbMATHGoogle Scholar
  923. [A4]
    Behnke, H. and Sommer, F.: Theorie der analytische Funktionen einer komplexen Veränderlichen, Springer, 1976.Google Scholar
  924. [A5]
    Cohn, H.: Conformai mapping on Riemann surfaces, Dover, reprint, 1980.Google Scholar
  925. [A6]
    Behnke, H. and Thullen, P.: Theorie der Funktionen mehrerer komplexer Veränderlichen, Springer, 1970.zbMATHGoogle Scholar
  926. [A7]
    Osgood, W.: Lehrbuch der Funktionentheorie, 1–2, Chelsea, reprint, 1965.Google Scholar
  927. [A1]
    Tsuji, M.: Potential theory in modern function theory, Chelsea, reprint, 1975.zbMATHGoogle Scholar
  928. [A2]
    Constantinescu, C. and Cornea, A.: Ideale Ränder Riemannscher Flächen, Springer, 1963.zbMATHGoogle Scholar
  929. [1]
    Nevanlinna, R.: Uniformisierung, Springer, 1967.zbMATHGoogle Scholar
  930. [2]
    Springer, G.: Introduction to Riemann surfaces, Chelsea, reprint, 1981.zbMATHGoogle Scholar
  931. [3]
    Krushkal’, S.L.: Quasi-conformai mappings and Riemann surfaces, Winston & Wiley, 1979 (translated from the Russian).Google Scholar
  932. [4]
    Bers, L.: ‘Uniformization, moduli, and Kleinian groups’, Bull. London Math. Soc. 4 (1972), 257–300.CrossRefMathSciNetzbMATHGoogle Scholar
  933. [5]
    Schiffer, M. and Spencer, D.C.: Functionals of finite Riemann surfaces, Princeton Univ. Press, 1954.zbMATHGoogle Scholar
  934. [6]
    Abikoff, W.: The real analytic theory of Teichmüller space, Springer, 1980.zbMATHGoogle Scholar
  935. [7]
    Farkas, H.M. and Kra, I.: Riemann surfaces, Springer, 1980.zbMATHGoogle Scholar
  936. [8]
    Krushkal’, S.L., Apanasov, B.N. and Guserkii, N.A.: Kleinian groups and uniformization in examples and problems, Amer. Math. Soc., 1986 (translated from the Russian).Google Scholar
  937. [9]
    Lehto, O.: Univalent functions and Teichmüller spaces, Springer, 1986.Google Scholar
  938. [A1]
    Gardiner, F.P.: Teichmüller theory and quadratic differentials, Wiley (Interscience), 1987.zbMATHGoogle Scholar
  939. [A2]
    Nag, S.: The complex analytic theory of Teichmüller spaces, Wiley (Interscience), 1988.zbMATHGoogle Scholar
  940. [A3]
    Schlichenmaier, M.: An introduction to Riemann surfaces, algebraic curves, and moduli spaces, Springer, 1989.zbMATHGoogle Scholar
  941. [1]
    Rashewski, P.K. [P.K. Rashevskiĭ]: Riemannsche Geometrie und Tensoranalyse, Deutsch. Verlag Wissenschaft., 1959 (translated from the Russian).Google Scholar
  942. [2]
    Eisenhart, L.P.: Riemannian geometry, Princeton Univ. Press, 1949.zbMATHGoogle Scholar
  943. [3]
    Gromoll, D., Klingenberg, W. and Meyer, W.: Riemannsche Geometrie im Grossen, Springer, 1968.zbMATHGoogle Scholar
  944. [A1]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, Wiley (Interscience), 1969.zbMATHGoogle Scholar
  945. [A2]
    Hicks, N.J.: Notes on differential geometry, v. Nostrand, 1965.zbMATHGoogle Scholar
  946. [A3]
    Schouten, J.A. and Struik, D.J.: Einführung in die neueren Methoden der Differentialgeometrie, Noordhoff, 1924.Google Scholar
  947. [A4]
    Spivak, M.: A comprehensive introduction to differential geometry, 1–5, Publish or Perish, 1979.Google Scholar
  948. [A5]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).zbMATHGoogle Scholar
  949. [A6]
    Eisenhart, L.P.: An introduction to differential geometry with the use of the tensor calculus, Princeton Univ. Press, 1947.zbMATHGoogle Scholar
  950. [A7]
    Schouten, J.A.: Ricci calculus, Springer, 1954 (translated from the German).zbMATHGoogle Scholar
  951. [1]
    Riemann, B.: Gesammelte mathematischen Abhandlungen, Dover, reprint, 1953.Google Scholar
  952. [2]
    Priwalow, LI. [LI. Privalov]: Einführung in die Funktionentheorie, 1–3, Teubner, 1958–1959 (translated from the Russian).Google Scholar
  953. [3]
    Goluzin, G.M.: Geometric theory of functions of a complex variable, Amer. Math. Soc., 1969 (translated from the Russian).zbMATHGoogle Scholar
  954. [A1]
    Nehari, Z.: Conformai mapping, Dover, reprint, 1975.Google Scholar
  955. [A1]
    Knopp, K.: Theorie und Anwendung der unendlichen Reihen, Springer, 1964. English translation: Blackie, 1951.Google Scholar
  956. [A2]
    Rudin, W.: Principles of mathematical analysis, McGraw-Hill, 1976, pp. 75–78.zbMATHGoogle Scholar
  957. [1]
    Chebotarev, N.G.: The theory of algebraic functions, Moscow-Leningrad, 1948, p. Chapt. 9 (in Russian).Google Scholar
  958. [2]
    Markushevich, A.I.: Introduction to the classical theory of Abelian functions, Moscow, 1979 (in Russian).zbMATHGoogle Scholar
  959. [3]
    Krazer, A.: Lehrbuch der Thetafunktionen, Chelsea, reprint, 1970.zbMATHGoogle Scholar
  960. [4]
    Conforto, F.: Abelsche Funktionen und algebraische Geometrie, Springer, 1956.zbMATHGoogle Scholar
  961. [A1]
    Griffiths, P.A. and Harris, J.E.: Principies of algebraic geometry, 1–2, Wiley, 1978.Google Scholar
  962. [A2]
    Arbarello, E.: ‘Periods of Abelian integrals, theta functions, and differential equations of KdV type’, in A.M. Gleason (ed.): Proc. Internat. Congress Mathematicians, Berkely 1986, Vol. I, Amer. Math. Soc., 1987, pp. 623–627.Google Scholar
  963. [A3]
    Mumford, D.: Tata lectures on theta, 1–2, Birkhäuser, 1983–1984.CrossRefzbMATHGoogle Scholar
  964. [1]
    Gromoll, D., Klingenberg, W. and Meyer, W.: Riemannsche Geometrie im Grossen, Springer, 1968.zbMATHGoogle Scholar
  965. [2]
    Lichnerowicz, A.: Global theory of connections and holonomy groups, Noordhoff, 1976 (translated from the French).CrossRefzbMATHGoogle Scholar
  966. [A1]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).zbMATHGoogle Scholar
  967. [1]
    Shabat, B.V.: Introduction to complex analysis, 2, Moscow, 1976 (in Russian).Google Scholar
  968. [2]
    Gunning, R. and Rossi, H.: Analytic functions of several complex variables, Prentice-Hall, 1965.zbMATHGoogle Scholar
  969. [3]
    Hörmander, L.: An introduction to complex analysis in several variables, North-Holland, 1973.zbMATHGoogle Scholar
  970. [A1]
    Behnke, H. and Thullen, P.: Theorie der Funktionen mehrerer komplexer Veränderlichen, Springer, 1970, Chapt. VI. 2. Erweiterte Aufl.zbMATHGoogle Scholar
  971. [A2]
    Grauert, H. and Fritzsche, K.: Several complex variables, Springer, 1976 (translated from the German).CrossRefzbMATHGoogle Scholar
  972. [1]
    Riemann, B.: ‘Über die Hypothesen, welche der Geometrie zu Grunde liegen’, in Das Kontinuum und andere Monographien, Chelsea, reprint, 1973.Google Scholar
  973. [2]
    Rashewski, P.K. [P.K. Rashevskii]: Riemannsche Geometrie und Tensoranalyse, Deutsch. Verlag Wissenschaft., 1959 (translated from the Russian).Google Scholar
  974. [3]
    Eisenhart, L.P.: Riemannian geometry, Princeton Univ. Press, 1949.zbMATHGoogle Scholar
  975. [4]
    Gromoll, D., Klingenberg, W. and Meyer, W.: Riemannsche Geometrie im Grossen, Springer, 1968.zbMATHGoogle Scholar
  976. [5]
    Aleksandrov, A.D.: Die innere Geometrie der konvexen Flächen, Akademie-Verlag, 1955 (translated from the Russian).zbMATHGoogle Scholar
  977. [6]
    Burago, Yu.D.