Advertisement

Yeast-Derived Products

  • Gerald Reed
  • Tilak W. Nagodawithana

Abstract

Although yeast is perhaps considered the oldest microbial associate of humankind, the role it played in shaping the lives of past civilizations was not recognized until the discovery of the microscope by van Leeuwenhoek two centuries ago. Many authorities now believe that complicated beverages like beer originated in Egypt around 6000 B.C. (Corran 1975). By 3000 B.C., bread making and brewing of beer were closely allied arts. Likewise, Assyrian and Egyptian historical documents dating as far back as 3500 B.C. mention grapes and wine. Although these civilizations were unaware of the chemical changes induced by yeast, they had sufficient empirical knowledge to modify their food products to make them more palatable, nutritious, and in some instances, intoxicating. The knowledge they acquired through trial and error was also transmitted through the ages to succeeding generations.

Keywords

Cell Wall Material Yeast Protein Yeast Cell Wall Derive Product Recommended Daily Allowance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achstetter, T., and D. H. Wolf. 1985, Proteinases, proteolysis and biological control in the yeast Saccharomyces cerevisiae. Yeast 1:139–157.CrossRefGoogle Scholar
  2. Amoco Food Co. 1974. Torutein Product Bulletin. Chicago, Illinois.Google Scholar
  3. Andrews, A. G., H. J. Phaff, and M. P. Starr. 1976. Carotenoids of Phaffia rhodozyma, a red pigmented fermenting yeast. Phytochemistry. 15:1003–1007.CrossRefGoogle Scholar
  4. Anon. 1970. Single Cell Proteins. Protein Advisory Group Guidelines, no. 4. United Nations, New York.Google Scholar
  5. Arnold, W. N. 1971. Heat inactivation kinetics of yeast beta-fructofuranosidase. A polydispersing system. Biochim. Biophys. Acta. 178:347–353.Google Scholar
  6. Bernstein, S. and P. E. Plantz. 1977. Production of yeast from whey. Food Eng. 49(11):74–75.Google Scholar
  7. Biemaan, L., and M. D. Glantz. 1968. Properties of a fungal lactase. Biochim. Biophys. Acta. 167:373–377.Google Scholar
  8. Borglum, G. B., and M. Z. Sternberg. 1972. Isolation and characterization of β-galactosidase from Saccharomyces lactis. J. Food Sci. 37: 619–623.CrossRefGoogle Scholar
  9. Bucovaz, E. T., J. C. Morrison, W. D. Whybrew, and S. J. Tarnowski. 1981. Process for the preparation of CoA-SPC from baker’s yeast. U.S. Patent 4,284,552.Google Scholar
  10. Chuah, C. T., A. Sarko, Y. Deslandes, and R. H. Marchessault. 1983. Triple helical crystalline structure of curdlan and paranylon hydrates. Macromolecules 16:1375–1382.CrossRefGoogle Scholar
  11. Cohn, W. E., and E. Volkin. 1953. On the structure of ribonucleic acids. J. Biol. Chem. 203:319–332.Google Scholar
  12. Corran, H. S. 1975. A History of Brewing. David and Charles, Newton Abbot, London.Google Scholar
  13. Daly, W. H., and L. P. Ruiz. 1974. Reduction of RNA in single cell proteins in conjunction with fiber formation. Biotechnol. Bioeng. 16:285–287.CrossRefGoogle Scholar
  14. Davies, R. 1964. Lactose utilization and hydrolysis in Saccharomyces cerevisiae. J Gen. Microbiol. 37:81–98.Google Scholar
  15. Decker, R., and K. Dirr. 1944. Nonprotein nitrogen of yeast. II Comparison of purine fraction and extraction of nucleic acids. Biochem Z. 316:248–254.Google Scholar
  16. Deslandes, Y., R. H. Marchessault, and A. Sarko. 1980. Triple helical structure of (1→3)β-D-glucan. Macromolecules 13:1466–1471.CrossRefGoogle Scholar
  17. DiLuzio, N. R. 1987. Soluble phosphorylated glucan. International Publication No. 87/01037. Publication under the patent cooperation treaty. International Searching Authority, USA.Google Scholar
  18. Gascon, S., P. Neumann, and J. O. Lampen. 1968. Comparative study of the properties of purified internal and external invertases from yeast. J. Biol. Chem. 243:1573–1577.Google Scholar
  19. Gatellier, C., and G. Gilkamans. 1972. Process of improving the food value of microorganisms obtained by culturing on hydrocarbon substrates. U. S. Patent 3,702,283.Google Scholar
  20. Gilbert, H. J., and W. Jack. 1981. The effect of proteinases on phenylalanine ammonia-lyase from the yeast Rhodotorula glutinis. Biochem J. 199:715–723.Google Scholar
  21. Gilliland, R. B. 1956. Maltotriose fermentation in the species differentiation of Saccharomyces. Compt. Rand. Trav. Lab. Carlsberg. Ser. Physiol. 26:139–148.Google Scholar
  22. Goodson, W., D. Hohn, T. K. Hunt, and Y. K. Leung. 1976. Augmentation of some aspects of wound healing by a skin respiratory factor. J. Surgical Res. 21:125–129.CrossRefGoogle Scholar
  23. Hata, T., R. Hayashi, and E. Doi. 1967. Purification of yeast proteinases. Part I. Fractionation and some properties of the proteinases. Agric. Biol. Chem. 31:150–159.CrossRefGoogle Scholar
  24. Hu, A. S. L., R. G. Wolfe, and F. J. Reichel. 1959. The preparation and purification of β-galactosidase from Escherichia coli, ML 308. Arch. Biochem. Biophys. 81:500–507.CrossRefGoogle Scholar
  25. Ikeda, K. 1912. The taste of the salt of glutamic acid. Orig. Com. 8th Int. Congr. Appl. Chem. 18:147.Google Scholar
  26. Johnson, E. A., D. E. Conklin, and M. J. Lewis. 1977. The yeast Phaffia rhodozyma as a dietary pigment source for salmonids and crustaceans. J. Fish. Res. Board of Canada 34:2417–2421.CrossRefGoogle Scholar
  27. Johnson, E. A., and M.J. Lewis. 1979. Astaxanthin formation by the yeast, Phaffia rhodozyma. J. Gen. Microbiol. 115:173–183.Google Scholar
  28. Johnson, E. A., T. G. Villa, M. J. Lewis, and H. J. Phaff. 1978. Simple method for the isolation of astaxanthin from the basidiomycetous yeast, Phaffia rhodozyma. Appl. Environ. Microbiol 35:1155–1159.Google Scholar
  29. Katchman, B. J., and W. O. Fetty. 1955. Phosphorus metabolism in growing cultures of S. cerevisiae. J. Bacteriol. 69:607–615.Google Scholar
  30. Kinsella, J. E., and J. K. Shetty. 1982. Recovery of proteinaceous material having reduced nucleic acid levels, U.S. Patent 4,348,479.Google Scholar
  31. Kodama, S. 1913. Isolation of inosinic acid. Tokyokagaku (J. Chem. Soc. Japan) 34:751.Google Scholar
  32. Kuninaka, A. 1986. Nucleic acids, nucleotides and related compounds In Biotechnology. Vol. 4. H. J. Rehm and G. Reed. eds. Verlag Chemie., Florida. 72–86.Google Scholar
  33. Kuninaka, A., M. Fujimoto, K. Uchida, and H. Yoshino. 1980. Extraction of RNA from yeast packed into column without isomerization. Agric. Biol Chem. 44:1821–1827.CrossRefGoogle Scholar
  34. Lenney, J. F., and J. M. Dalbec. 1969. Yeast proteinase B. Identification of the inactive form as an enzyme inhibitor complex. Arch. Biochem. Biophys. 129:407–409.CrossRefGoogle Scholar
  35. Lindegren, C. C., S. Speigelman, and G. Lindegren. 1944. Mendelian inheritance of adaptive enzymes in yeast. Proc. Natl. Acad. Sci. USA 30:346–352.CrossRefGoogle Scholar
  36. Meister, H. 1965. Yeast invertase: An illusive but useful enzyme. Wallerstein Lasb. Commun. 28:7–15.Google Scholar
  37. Miller, M. W., M. Yoneyama, and M. Soneda. 1976. Phaffia: A new yeast genus in the Deuteromycotina (Blastomycetes). Int. J. Syst. Bacteriol. 26:286–291.CrossRefGoogle Scholar
  38. Mortimer, R. K., and D. C. Hawthorne. 1969. Yeast genetics. In The Yeasts, vol. 1, A. H. Rose and J. S. Harrison (eds.). Academic Press, New York, pp. 385–460.Google Scholar
  39. Nakajima, N., K. Ichikawa, M. Kamada, and E. Fujita. 1961. Food chemical studies on 5′ ribonucleotides. I. On the 5′ ribonucleotides in foods. (1) Determination of the 5′ nucleotides in various stocks by ion exchange chromatography. J. Agric. Chem. Soc. Japan. 35:797.Google Scholar
  40. Nakao, Y. 1979. Microbial production of nucleosides and nuceotides. In Microbial Technology, Microbial Processes, vol. 1, H. J. Peppier and D. Perlman (eds.). Academic Press, New York, pp. 311–354.Google Scholar
  41. Newell, J. A., E. A. Robbins, and R. D. Seeley, 1975. Manufacture of yeast protein isolate having reduced nucleic acid content by an alkali process, U.S. Patent 3,867,555.Google Scholar
  42. Newell, J. A., R. D. Seeley, and E. A. Robbins, 1975. Process of making yeast protein isolate having reduced nucleic acid levels, U.S. Patent 4,348,479.Google Scholar
  43. Ohashi, M., and S. Kozutsumi. 1966. Manufacture and utilization of invertase. I. Manufacture of liquid invertase. Nippon Shokanin Kogyo Gakkaishi 13(1): 1–7.CrossRefGoogle Scholar
  44. Peppier, H. J. 1965. Amino acid composition of yeast grown on different spent sulfite liquors. J. Agric. Food. Chem. 13:34–36.CrossRefGoogle Scholar
  45. Phaff, H. J. 1971. Structure and biosynthesis of the yeast cell envelope. In The Yeasts, vol. 2, A. H. Rose and J. J. Harrison (eds.). Academic Press, New York, pp. 135–210.Google Scholar
  46. Reed, G. and H. J. Peppier. 1973. Feed and food yeast. In Yeast Technology. AVI Publishing Co., Westport, Conn., pp. 328–351.Google Scholar
  47. Robbins, E. A. 1976. Manufacture of yeast protein isolate having a reduced nucleic acid content by a thermal process, U.S. Patent 3,991,215.Google Scholar
  48. Robbins, E. A., and R. D. Seeley. 1981. Process for the prevention and reduction of elevated blood cholesterol and triglyceride levels, U.S. Patent 4,251,519.Google Scholar
  49. Roberts, C., A. T. Ganesan, and W. Haupt. 1959. Genetics of melibiose fermentation in Saccharomyces italicus var. melibiosi. Heredity 13:499–517.CrossRefGoogle Scholar
  50. Saheki, T., and H. Holzer. 1975. Proteolytic activity in yeasts. Biochim. Biophys. Acta. 384:203–214.Google Scholar
  51. Sarko, A., H. C. Wu, C. T. Chuah. 1983. Multiple helical glucans. Biochem. Soc. Trans. 11:139–142.Google Scholar
  52. Schuster, L. 1957. Rye grass nucleases. J. Biol. Chem. 229:289–303.Google Scholar
  53. Sheets, R. M., and R. C. Dickson. 1981. LAC 4 is the structural gene for β-galactosidase in Kluyveromyces lactis. Genetics 98:729–745.Google Scholar
  54. Shimazono, H. 1964. Distribution of 5′-ribonucleatides in foods and their application to foods. Food Technol. 18:294–303.Google Scholar
  55. Sidoti, D. R., G. M. Landgraph, and R. A. Khalifa. 1973. Functional properties of baker’s yeast glycan. Presented at the 33rd Annual Meeting of the Institute of Food Technologists, Miami, Florida. Jan. 6–14.Google Scholar
  56. Sotskaya, V. P., V. A. Smirnov, and L. Y. Tikhomirov. 1965. Precipitation of invertase from yeast autolysates with ammonium sulfate. Izv. Vyssh. Ucheb. Zavedenii. Pischevaya Tekhnol. 6:38–42.Google Scholar
  57. Sperti, G. 1943. Toilet preparation, U.S. Patent 2,320,478.Google Scholar
  58. Stimpson, E. G. 1954. Drying of yeast to inactivate zymase and preserve lactase, U.S. Patent 2,693,440.Google Scholar
  59. Takei, S., S. Amao, T. Endo, K. Ishibashi, and T. Ito. 1967. A simplified method for the manufacture of yeast invertase. Ann. Sankyo. Res. Lab. 19:81–85.Google Scholar
  60. Tannenbaum, S. R., A. J. Sinskey, and S. B. Maul. 1973. Process of reducing the nucleic acid content in yeast, U.S. Patent 3,720,583.Google Scholar
  61. Tarantino, A. L., T. H. Plummer, and F. Miley. 1974. The release of intact oligosaccharides from specific glycoproteins by endo-β-N-acetyl glucosaminidase H. J. Biol. Chem. 249:818–824.Google Scholar
  62. Torii, K., and R. H. Cagan. 1980. Biochemical studies of taste sensation. IX. Enhancement of L-(3H) glutamate binding to bovine taste papillae by 5′-ribonucleotides. Biochim. Biophys. Acta. 627:313.CrossRefGoogle Scholar
  63. Torii, K., T. Mimura, and Y. Yugari, 1986. Effect of dietary protein on the taste preference for amino acids in rats. In Interaction of the Chemical Senses with Nutrition. Academic Press, New York, p. 45.Google Scholar
  64. von Borstel, R. C. 1969. Yeast genetics supplement. Mol. Genet. Bull. 31:1–28.Google Scholar
  65. Wahlstrom, V. L., and K. C. Fugelsang. 1987. Utilization of Yeast Hulls in Wine Making Observed. Research Bulletin. California State University, Fresno, pp. 1–5.Google Scholar
  66. Yamaguchi, S. 1987. Fundamental properties of umami in human taste sensation. In Umami: A Basic Taste, Y. Kawamura and M. R. Kare (eds.). 1st Edition. Marcel Dekker, Inc., New York, p. 41.Google Scholar
  67. Young, H., and R. P. Healy. 1957. Production of Saccharomyces fragilis with an optimum yield of lactase, U.S. Patent 2,776,928.Google Scholar
  68. Ziemba, J. V. 1967. Tailored hydrolysates, how made, how used. Food Eng. 19(1):82–85.Google Scholar

Copyright information

© Van Nostrand Reinhold 1991

Authors and Affiliations

  • Gerald Reed
    • 1
  • Tilak W. Nagodawithana
    • 1
  1. 1.Universal Foods CorporationMilwaukeeUSA

Personalised recommendations