Skip to main content

Baker’s Yeast Production

  • Chapter

Abstract

Bread doughs are fermented for very short periods of time with a range of 30 minutes to 4 hours. They are inoculated with 300 × 106 cells per gram and there is little or no yeast growth during the fermentation. In contrast, wine, beer, and distiller’s mashes are fermented for periods ranging from several days to several weeks. Inoculation levels are in the range of 2–10 × 106 cells per milliliter and there is a 5- to 10-fold multiplication of yeast cells during the fermentation. In addition, yeast cells may be recycled for use in succeeding batches of beer or wine fermentations. Baker’s yeast cannot be recycled because the yeast is killed during the baking process. Consequently, the production of baker’s yeast can be carried out on a very large industrial scale, and since the latter part of the nineteenth century, baker’s yeast has been produced by companies that specialize in its production.

Keywords

  • Yeast Growth
  • Aerobic Growth
  • Press Cake
  • Cane Molas
  • Beet Molas

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-011-9771-7_7
  • Chapter length: 54 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-94-011-9771-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiba, S., S. Nagai, and Y. Nishizawa. 1976. Fed-batch culture of S. cerevisiae. A perspective of computer control to enhance the productivity in baker’s yeast cultivation. Biotech. Bioeng. 18:1001–1016.

    CrossRef  Google Scholar 

  • Amsz, J., R. F. Dale, and H. J. Peppier. 1956. Carbon dioxide sorption by yeast. Science 123:463.

    CrossRef  Google Scholar 

  • Anon. 1982. Corning-Kroger combine technology to exploit lactose hydrolyzed whey. Food Develop. Jan. 1982:34–35.

    Google Scholar 

  • Bach, H. P., W. Woehrer, and M. Roehr. 1978. Continuous determination of ethanol during aerobic cultivation of yeasts. Biotech. Bioeng. 20:799–807.

    CrossRef  Google Scholar 

  • Barnett, J. A. 1976. The utilization of sugars by yeast. Adv. Carbohydrate Chem. Biochem. 32:125–234.

    CrossRef  Google Scholar 

  • Beker, M.J., and A. I. Rapoport. 1987. Conservation of yeasts by dehydration. Adv. Biochem. Eng./Biotechnol. 35:127–171.

    CrossRef  Google Scholar 

  • Belokon, V. N. 1962. Yeast drying on a belt drier (in Russian). Spirt. Prom. 1:40–42.

    Google Scholar 

  • Bergander, E. 1969. The effect of various fermentation inhibitors in molasses (in German). Lehensm. Industrie 16:219–221.

    Google Scholar 

  • Beudeker, R. F., H. W. van Dam, J. B. van der Platt, and K. Vellenga. 1990. Developments in baker’s yeast production. In Yeast Biotechnology and Catalysis, H. Verachtert and De Mot (eds.). Marcel Dekker, New York.

    Google Scholar 

  • engineering contributions to bioreactor design and operation. In Biochemical Engineering, H. Chmiel et al. (ed.). Gustav Fischer, Stuttgart, West Germany. Brauer, H. 1985.

    Google Scholar 

  • Blenke, H. 1987. Stirred vessel reactors. In Biotechnology, vol. 2, H. Brauer (ed.). VCH Publishing Company, Weinheim, West Germany.

    Google Scholar 

  • Bronn, W. K. 1985. Investigations of the technological and economical possibility of using raw materials other than molasses for yeast production (in German). Research Report T 85–117, Ministry for Science and Technology, German Federal Republic.

    Google Scholar 

  • Bruinsma, B. L., and K. F. Finney. 1981. Functional (bread making) properties of a new yeast. Cereal Chem. 58:477–480.

    Google Scholar 

  • Burrows, S. 1970. Baker’s yeast. In The Yeasts, vol. 3, A. H. Rose and J. S. Harrison (eds.). Academic Press, New York.

    Google Scholar 

  • Butschek, G., and R. Kautzmann. 1962. Production of baker’s yeast (in German). In Die Hefen, vol. 2, F. Reiff et al. (ed.). Verlag Hans Carl, Nuremberg, West Germany.

    Google Scholar 

  • Carlin, G. T. 1958. The fundamental chemistry of bread making. Proc. Am. Soc. Bakery Eng. pp. 56–63.

    Google Scholar 

  • Ceijka, A. 1983. Preparation of media. In Biotechnology vol. 3, H. Dellweg (ed.). VCH Publishing Company, Weinheim, West Germany.

    Google Scholar 

  • Chen, S. L., and M. Chiger. 1985. Production of baker’s yeast. In Comprehensive Biotechnology, vol. 3, M. Moo-Young (ed.). Pergamon Press, Oxford, U.K.

    Google Scholar 

  • Chen, S. L., and E. J. Cooper. 1962. Production of active dry yeast. U.S. Patent 3,041,249.

    Google Scholar 

  • Chen, S. L., E. J. Cooper, and F Gutmanis. 1966. Active dry yeast: Protection against oxidative deterioration during storage. Food Technol. 20(12):79–83.

    Google Scholar 

  • Chen, S. L., and F. Gutmanis. 1976. Carbon dioxide inhibition of yeast growth in biomass production. Biotechnol. Bioeng. 18:1455–1462.

    CrossRef  Google Scholar 

  • Clement, Ph. 1983. Preparation of dried baker’s yeast. U.S. Patent 4,370,420.

    Google Scholar 

  • Cooney, C. L. 1981. Growth of microorganisms. In Biotechnology vol. 1, H.J. Rehm and G. Reed (eds.). VCH Publishing Company, Weinheim, West Germany.

    Google Scholar 

  • Cooney, C. L., H. Y. Wan, and D. C. I. Wang. 1977. Computer-aided material balancing for production of fermentation parameters. Biotechnol. Bioeng. 19:55–67.

    CrossRef  Google Scholar 

  • Cooper, C. M., G. A. Fernstrom, and S. A. Miller. 1944. Performance of agitated liquid contactors. Ind. Eng. Chem. 36:504–509.

    CrossRef  Google Scholar 

  • Dairaku, K., Y. Yamasaki, K. Kuki, S. Shioya, and T. Takamatsu. 1981. Maximum production in a bakers’ yeast fed-batch culture by a tubing method. Biotechnol Bioeng. 23:2069–2081.

    CrossRef  Google Scholar 

  • DeBeczy, G., and A. J. Liebmann. 1944. Aeration in the production of compressed yeast. Ind. Eng. Chem. 30:882–890.

    CrossRef  Google Scholar 

  • Dellweg, H., W. K. Bronn, and W. Hartmeier. 1977. Respiration rates of growing and fermenting yeast. Kem. Kemi 4(12):611–615.

    Google Scholar 

  • Dobbs, A. J., M. Peleg, and R. E. Mudget. 1982. Some physical characteristics of active dry yeast. Powder Technol. 32:63–69.

    CrossRef  Google Scholar 

  • Drews, B., H. Specht, and A. M. Herbst. 1962. Growth of baker’s yeast in concentrated molasses wort. Branntweinwirtschaft 102:245–247.

    Google Scholar 

  • Ebner, H., K. Pohl, and A. Enenkel. 1967. Self priming aerator and mechanical defoamer for microbiological processes. Biotechnol. Bioeng. 9:357–364.

    CrossRef  Google Scholar 

  • Fiechter, A., M. Meriners, and D. A. Sukatsch. 1987. Biological regulation and process control. In Fundamentals of Biotechnology, P. Prave et al. (ed.). VCH Publishing Company, Weinheim, West Germany.

    Google Scholar 

  • Finn, R. K. 1967. Agitation and aeration. Biochem. Biol. Eng. Sci. 1:69–99.

    Google Scholar 

  • Fowell, M. S. 1965. The identification of wild yeast colonies on lysine agar. J. Appl. Bacteriol. 28:373–383.

    CrossRef  Google Scholar 

  • Fowell, M. S. 1967. Infection control in yeast factories and breweries. Proc. Biochem. 2(12): 11–15.

    Google Scholar 

  • Frey, C. N. 1957. History and development of active dry yeast. In Yeast, Its Characteristics, Growth and Function in Baked Products. Proc. Symp. U.S. Quartermaster Food Container Inst., Chicago, pp. 7–32.

    Google Scholar 

  • Fries, H. von. 1962. Peculiarities of yeast growth in aerated fermentations (in German). Branntweinwirtschaft 102:442–445.

    Google Scholar 

  • Grylls, S. M., S. D. Rennie, and M. Kelly. 1980. Process for producing active dry yeast. U.S. Patent 4,188,407.

    Google Scholar 

  • Harrison, J. S. 1967. Aspects of commercial yeast production. Proc. Biochem. 2(3):41–45.

    Google Scholar 

  • Harrison, J. S. 1971. Yeast production. Prog. Industr. Microbiol. 10:129–177.

    Google Scholar 

  • Hartmeier, W. 1977. Active dry yeast and method of its production (in German). German Patent Appl. 25 15 029.

    Google Scholar 

  • Hatch, R. T. 1975. Experimental and theoretical studies of oxygen transfer in the airlift fermenter. In Single-Cell Protein II, S. R. Tannenbaum and D. I. C. Wang, (eds.). MIT Press, Cambridge, Mass.

    Google Scholar 

  • Hautera, P., and T. Lovgren. 1975. The fermentation activity of baker’s yeast. Its variation during storage. Baker’s Digest 49(3):36–37, 49.

    Google Scholar 

  • Hill, F. F. 1987. Dry living microorganisms—Products for the food industry. In Biochemical Engineeering, H. Chmiel, W P. Hammes, and J. E. Bailey (eds.). Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Hongisto, H. J., and P. Laakso. 1978. Application of the Finn-sugar-Pfeiffer and Langen desugaring process in a beet sugar factory. 20th General Meeting of the American Society of Sugar Beet Technology, San Diego, Aug. 6.

    Google Scholar 

  • Hospodka, J., Z. Caslavaky, K. Beran, and F. Stross. 1962. The Polarographic determination of oxygen uptake and transfer rate in aerobic steady-state yeast cultivation. In Continuous Cultivation of Microorganisms, I. Malik, K. Beran, and J. Hospodka, (eds.). Academic Press, New York.

    Google Scholar 

  • Jakubowska, J., and M. Wlodarczyk. 1969. Observations on yeast growth and metabolism influenced by beta-indolylacetic acid. Antonie van Leeuwenhoek J. Microbiol. Serol. 35 (Suppl. Yeast Symp.), p. G17.

    Google Scholar 

  • Johnston, W. R. 1959. Active dry yeast products and processes for producing same. U.S. Patent 2,919,194.

    Google Scholar 

  • Kautzmann, R. 1969. Effect of amino acids on yield and quality of baker’s yeast. Branntweinwirtschaft 109:214–222.

    Google Scholar 

  • Kiby, W. 1912. Handbook of production of compressed yeast (in German). Friedrich Vieweg & Son, Braunschweig.

    Google Scholar 

  • Kirsop, B. E., and C. P. Kurtzman. 1988. Yeasts. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Kowalski, S., I. Zander, and S. Windisch. 1981. Hybrid yeast strains capable of raising an extraordinarily broad range of dough types. Eur. J. Appl. Microbiol. Biotechnol. 11:146–150.

    CrossRef  Google Scholar 

  • Kuestler, E., and K. Rokitansky. 1960. Process of producing yeast of increased dry solids content and reduced plasticity. U.S. Patent 2,947,668.

    Google Scholar 

  • Kula, M. R. 1985. Recovery operations. In Biotechnology, vol. 2, H. Brauer (ed.). VCH Publishing Company, Weinheim, West Germany.

    Google Scholar 

  • Lagunas, R. 1986. Misconceptions about the energy metabolism of Saccharomyces cerevisiae. Yeast 2:221–228.

    CrossRef  Google Scholar 

  • Langejan, A. 1972. A novel type of active dry baker’s yeast. In Fermentation Technology Today, G. Terui (éd.), pp. 669–671. Society of Fermentation Technology, Osaka, Japan. Langejan, A. 1980. Active dry baker’s yeast. U.S. Patent 4,217,420.

    Google Scholar 

  • Large, P. J. 1986. Degradation of organic nitrogen compounds by yeast. Yeast 2:1–34.

    CrossRef  Google Scholar 

  • Liljestrom-Suominen, P., V. Joutsjoki, and M. Korhola. 1988. Construction of a stable alpha-galactosidase producing baker’s yeast strain. Appl. Environ. Microbiol. 54:245–249.

    Google Scholar 

  • Linek, V., and P. Benes. 1978. Enhancement of oxygen absorption into sodium sulfite solutions. Biotechnol. Bioeng. 20:697–707.

    CrossRef  Google Scholar 

  • McCann, A. K., and J. A. Barnett. 1986. The utilization of starch by yeasts. Yeast 2:109–115.

    CrossRef  Google Scholar 

  • Mateles, R. I. 1971. Calculation of oxygen required for cell production. Biotechnol. Bioeng. 13:581–582.

    CrossRef  Google Scholar 

  • Meyenburg, H. K. von. 1969. Energetics of the budding cell of S. cerevisiae during glucose limited aerobic growth. Archives Microbiol. 66:289–303.

    CrossRef  Google Scholar 

  • Mor, J. R., and A. Fiechter. 1968. Continuous cultivation of S. cerevisiae. I. Growth on ethanol under steady state conditions. Biotechnol. Bioeng. 10:159–176.

    CrossRef  Google Scholar 

  • Moulin, G., and P. Galzy. 1984. Whey, a potential substrate for biotechnology. Biotechnol. Gen. Eng. Rev. 1:347–373.

    Google Scholar 

  • Notkina, L. G., I. M. Balyberdina, and L. D. Lavrenchuk. 1975. The effect of nitrites on baker’s yeast manufacture (in Russian). Khlebopek. Konditer Prom. 2:28–31.

    Google Scholar 

  • Olson, A. J. C. 1961. Manufacture of baker’s yeast by continuous fermentation. I. Plant and process. Soc. Chem. Ind. (London) Monograph 12:18–93.

    Google Scholar 

  • Oura, E. 1974. Effect of aeration intensity on the biochemical composition of baker’s yeast. I. Factors affecting the type of metabolism. Biotechnol. Bioeng. 16:1197–1212.

    CrossRef  Google Scholar 

  • Oura, E. 1983. Biomass from carbohydrates. In Biotechnology, vol. 3, H. Dellweg (ed.). VCH Publishing Company, Weinheim, West Germany.

    Google Scholar 

  • Panek, A. D. 1975. Trehalose synthesis during starvation of baker’s yeast. Eur. J. Appl. Microbiol. Biotechnol 2:39–46.

    Google Scholar 

  • Peppier, H. J. 1960. Yeast. In Bakery Technology and Engineering, A. Matz (ed.). AVI Publishing Company, Westport, Conn.

    Google Scholar 

  • Podel’ko, A. D., et al. 1975. The effect of ultrasound on the microflora in yeast manufacturing plants (in Russian). Khlebopek. Konditer Prom. 9:23–24.

    Google Scholar 

  • Reed, G. 1982. Production of baker’s yeast. In Prescott and Dunns Industrial Microbiology, 4th ed., G. Reed (ed.). AVI Publishing Company, Westport, Conn.

    Google Scholar 

  • Reed, G., and H. J. Peppier. 1973. Yeast Technology. AVI Publishing Company, Westport, Conn.

    Google Scholar 

  • Rodney, P. J., and P. F. Greenfield. 1984. Review of yeast ionic nutrition. I. Growth and fermentation requirements. Proc. Biochem. 19(2):48–60.

    Google Scholar 

  • Rosen, K. 1977. Production of baker’s yeast. Proc. Biochem. 12(3): 10–12.

    Google Scholar 

  • Rupprecht, H., and L. Popp. 1970. Preparation of stable concentrate of baking flours containing yeast. U.S. Patent 3,510,312.

    Google Scholar 

  • Sambuchi, M., et al. 1974. Filtration and extrusion characteristics of baker’s yeast. I. Results of compression permeability test and constant pressure filtration (in Japanese). Hakko Kogaku Zasshi 49:880–885.

    Google Scholar 

  • Sanderson, G. W. and G. Reed. 1985. Fermented products from whey and whey permeate. IDF Seminar (New Dairy Products via New Technology), Atlanta, Ga., Oct. 1985.

    Google Scholar 

  • Sato, T. 1966. Baker’s Yeast (in Japanese). Korin-Shoin Publ, Tokyo.

    Google Scholar 

  • Schaaf, I. 1988. The effect of overproduction of glycolytic enzyme on the rate of alcoholic fermentation. Yeast Newsletter 37(1):8.

    Google Scholar 

  • Schmidt-Kastner, G., and Ch. Gölker. 1987. Product recovery in biotechnology. In Fundamentals in Biotechnology, P. Prave et al. (eds.). VCH Publishing Company, Weinheim, West Germany.

    Google Scholar 

  • Schreier, K. 1974. Bioreactors: stage of development and industrial application; especially with regard to systems for transfer of gas. 4th International Symposium on Yeasts, Vienna.

    Google Scholar 

  • Schuegerl, K. and W. Sittig. 1987. Bioreactors. In Fundamentals of Biotechnology. P. Praeve, ed. VCH Publ. Co., Weinheim, West Germany.

    Google Scholar 

  • Sher, H. N. 1961. Manufacture of bakers’ yeast by continuous fermentation. II. Instrumentation. Soc. Chem. Ind. (London) Monograph 12:94–115.

    Google Scholar 

  • Shishatskii, Y. I., and G. A. Bocharova. 1973. Vacuum drying of baker’s yeast (in Russian). Izv. Vyssh. Uchebn. laved Pishch. Tekhnol. 5:73–77.

    Google Scholar 

  • Sikyta, B. 1983. Methods in Industrial Microbiology. Ellis Horwood Ltd., Chichester, Sussex, U.K.

    Google Scholar 

  • Sreekrishna, K., and R. C. Dickson. 1985. Construction of strains of Saccharomyces cerevisiae that grow on lactose. Proc. Natl. Acad. Sci. USA 82:7909–7913.

    CrossRef  Google Scholar 

  • Stineman, T. L., J. D. Edwards, and J. C. Grosskopf. 1980. Production of baker’s yeast from acid whey. U.S. Patent 4,192,918.

    Google Scholar 

  • Strohm, J. A., and R. F. Dale. 1961. Dissolved oxygen measurement in yeast propagation. Ind. Eng. Chem. 53:760–764.

    CrossRef  Google Scholar 

  • Stros, F., Z. Caslavsky, and I. Tomisek. 1968. The development of turbine aerators for the aerobic growth of yeast in Czechoslovakia (in Czech). Kvasny Prum. 14(5): 109–112.

    Google Scholar 

  • Suomalainen, H. 1963. Changes in cell constitution of baker’s yeast in changing growth conditions. Pure Appl. Chem. 7:634–654.

    CrossRef  Google Scholar 

  • Suomalainen, H. 1975. Some enzymological factors influencing the leavening activity and keeping quality of baker’s yeast. Eur.J. Appl. Microbiol. 1:1–12.

    CrossRef  Google Scholar 

  • Trivedi, N. B., G. K. Jacobson, and W. Tesch. 1986. Baker’s yeast. CRC Crit. Rev. Biotechnol. 24:75–109.

    CrossRef  Google Scholar 

  • Van Horn, D. R. 1989. Cream yeast. Proc. Am. Soc. Bakery Eng. pp. 144–153.

    Google Scholar 

  • Volkova, G. A., V.I. Drobot, and I. M. Roiter. 1974. Use of liquid yeast concentrate in bread baking. Kharchova Prom. 6:32–34.

    Google Scholar 

  • Volkova, G. A., and I. M. Roiter. 1973. Changes in the quality of yeast cream during storage (in Russian). Khlebopek. Konditer Prom. 11:13–16.

    Google Scholar 

  • Wang, H. Y., C. L. Cooney, and D. I. C. Wang. 1977. Computer aided baker’s yeast fermentation. Biotechnol. Bioeng. 19:69–86.

    CrossRef  Google Scholar 

  • Wang, H. Y., C. L. Cooney, and D. I. C. Wang. 1979. Computer control of baker’s yeast production. Biotechnol Bioeng. 21:975–995.

    CrossRef  Google Scholar 

  • Whaite, P., S. Aborhey, E. Hong, and P. L. Rogers. 1978. Microprocessor control of respiratory quotient. Biotechnol Bioeng. 20:1459–1463.

    CrossRef  Google Scholar 

  • White, J. 1954. Yeast Technology. Chapman and Hall, London.

    Google Scholar 

  • Williams, D., P. Yousefpour, and E. M. H. Wellington. 1986. On-line adaptive control of a fed-batch fermentation of Saccharomyces cerevisiae. Biotechnol. Bioeng. 28:631–645.

    CrossRef  Google Scholar 

  • Woehrer, W, and M. Roehr. 1981. Regulatory aspects of baker’s yeast in aerobic fed-batch cultures. Biotechnol. Bioeng. 23:567–581.

    CrossRef  Google Scholar 

  • Zikmanis, P. B., S. I. Auzane, R. V. Kruce, L. P. Auzina, and M. J. Beker. 1983. Interrelationship between the fatty acid composition and metabolic pathways upon dehydration-rehydration of the yeast Saccharomyces cerevisiae. Eur. J. Appl. Microbiol Biotechnol 18:298–302.

    CrossRef  Google Scholar 

  • Zikmanis, P. B., S. I. Auzane, L. P. Auzina, M. V. Margevicha, and M J. Beker. 1985. Changes of ergosterol content and resistance of population upon drying-rehydration of the yeast Saccharomyces cerevisiae. Appl Microbiol. Biotechnol. 22:265–267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Van Nostrand Reinhold

About this chapter

Cite this chapter

Reed, G., Nagodawithana, T.W. (1991). Baker’s Yeast Production. In: Yeast Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9771-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9771-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-9773-1

  • Online ISBN: 978-94-011-9771-7

  • eBook Packages: Springer Book Archive