Skip to main content

Food and Feed Yeast

  • Chapter
Yeast Technology

Abstract

Yeast-fermented foods contribute a significant percentage of nutrients to the human diet. Table 9-1 shows the annual per capita consumption of all fermented foods in the United States. Nutritionally the most important yeast fermentations are baked goods and beer. Foods fermented by bacteria are included in the table to afford a comparison. Nutritionally the most important food fermented by bacteria is cheese.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anon. 1989. Single cell oil: A technology looking for applications. Food Engineering, Sept., 108–109.

    Google Scholar 

  • Arnold, W. N. 1981. Yeast Cell Envelopes: Biochemistry, Biophysics, and Ultrastructure. CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Association of American Feed Control Officials. 1982. Official Publication, D. H. James (ed.). Department of Agriculture, State Capital Building, Charleston, W.V.

    Google Scholar 

  • Bacon, J. S. D. 1981. Nature and disposition of polysaccharides within the cell envelope. In Yeast Cell Envelopes: Biochemistry, Biophysics and Ultrastructure, vol. 1., W. N. Arnold (ed.). CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Becker, D. A., and G. H. Emert. 1983. Evaluation of enzyme cost for simultaneous saccharification and fermentation of cellulose to ethanol. Dev. Industr. Microbiol 24:123–129.

    Google Scholar 

  • Bernstein, S., C. H. Tzeng, and D. Sisson. 1977. The commercial fermentation of cheese whey for the production of protein or alcohol. In Single Cell Protein from Renewable and Nonrenewable Resources, A. H. Humphrey and E. L. Gaden (eds.). Biotechnol. Bioeng. Symp. 7, Wiley, New York.

    Google Scholar 

  • Blanchet, M., and F. Biju-Duval. 1969. International Dairy Federation Seminar on Whey Processing and Utilization at Weihenstephan, German Fed. Rep.

    Google Scholar 

  • Bryle, D., G. Sarwar, R. W. Peace, H. G. Bottin, and L. Saboie. 1986. Effect of feeding food yeast and nucleic acid metabolites on rat growth. Proc. Int. Symp. Food and Biotechnology, Quebec, Aug., p. 275.

    Google Scholar 

  • Butscheck, G. 1962. Nutritional and feed yeasts (in German). In Die Hefen, vol. 2, F. Reiff et al. (eds.). Verlag Hans Carl, Nurnberg.

    Google Scholar 

  • Cantor, A. H., M. L. Langevin, T. Noguchi, and M. L. Scott. 1975. Efficacy of selenium in selenium compounds and feed for prevention of pancreatic fibrosis in chicks. J. Nutr. 105:106–111.

    Google Scholar 

  • Cejka, A. 1985. Preparation of media. In Biotechnology, vol. 2, H. J. Rehm and G. Reed (eds.). VCH Publishing Co., Weinheim, West Germany.

    Google Scholar 

  • Champagnat, A., C. Vernet, B. Laine, and J. Filosa. 1963. Microbial de-waxing with production of protein-vitamin concentrates. 6th World Protein Congress, June, Frankfurt, German Fed. Rep.

    Google Scholar 

  • Combs, G. F, and S. B. Combs. 1984. The nutritional biochemistry of selenium. Ann. Rev. Nutr. 4:257–280.

    Article  Google Scholar 

  • Dickson, R. C., and R. H. Tomlinson. 1976. Selenium in blood and human tissue. Chim. Acta 16:311–321.

    Google Scholar 

  • Doisy, R. J., D. H. R Streeter, J. M. Freiber, and A. J. Schneider. 1976. Chromium metabolism in man and biochemical effects. In Trace Elements in Human Health and Disease, vol. 2, A. S. Prasad (ed.). Academic Press, New York.

    Google Scholar 

  • Dziezak, J. D. 1987. Yeasts and yeast derivatives. Definitions, characteristics and processing. Food Technol. 41:104–121, 122–125.

    Google Scholar 

  • Edozien, J. C., U. U. Udo, V. R. Young, and N. S. Scrimshaw. 1970. Effects of high levels of yeast feeding on uric acid metabolism of young men. Nature 228:180.

    Article  Google Scholar 

  • Einsele, A. 1983. Biomass from higher n-alkanes. In Biotechnology, vol. 5, H. Dellweg (ed.). VCH Publishing Co., Weinheim, West Germany.

    Google Scholar 

  • Faust, U. 1987. Production of microbial biomass. In Fundamentals of Biotechnology, P. Praeve et al. (eds.). VCH Publishing Co., New York.

    Google Scholar 

  • Faust, U., and P. Praeve. 1983. Biomass from methane and methanol. In Biotechnology, vol. 3, H. Dellweg (ed.). VCH Publishing Company, Weinheim, West Germany

    Google Scholar 

  • Frost, G. M. and D. A. Moss. 1987. Production of enzymes by fermentation. In Biotechnology, vol. 7a. H. J. Rehm and G. Reed (eds.). VCH Publishing Co., Weinheim, West Germany.

    Google Scholar 

  • Goulet, J. 1986. Upgrading of cheese whey: Some initiatives. In Food and Biotechnology. Proc. Int. Symp., Quebec, Aug. 19–22.

    Google Scholar 

  • Gow, J. S., J. D. Littlehailes, S. R. L. Smith, and R. B. Walter. 1975. SCP production from methanol: Bacteria. In Single Cell Protein II, S. R. Tannenbaum and D. I. C. Wang (eds.). MIT Press, Cambridge, Mass.

    Google Scholar 

  • Humphrey, A. E. 1970. Microbial protein from petroleum. Proc. Biochem. 5(6): 19–22.

    Google Scholar 

  • Ingledew, W M. 1977. Spent brewer’s yeast—Analysis, improvement, and heat processing. Tech. Quart. Master Brew. Assoc. Am. 14(4):231–237.

    Google Scholar 

  • Inskeep, G. C., A. J. Wiley, J. M. Holderby, and L. P. Hughes. 1951. Food yeast from sulfite liquor. Ind. Eng. Chem. 43:1702–1711.

    Article  Google Scholar 

  • Kockova-Kratochvilova, A. 1982. Kvasinky a KvasinkoviteMicroorganizmy (Yeast and Yeastlike Organisms; in Slovak). ALFA, Bratislava, Czechoslovakia.

    Google Scholar 

  • Korhola, M., A. Vainio, and K. Edelmann. 1986. Selenium yeast. Ann. Clin. Res. 18:65–68.

    Google Scholar 

  • Ladish, M. R., and G. T. Tsao. 1986. Engineering and economics of cellulose saccharification. Enzyme Microbiol Technol. 8(2):66–69.

    Article  Google Scholar 

  • Laine, B. M., R. C. Snell, and W. A. Peet. 1976. Production of single cell proteins from n-paraffins. Chem. Eng. (London) 310:440–443, 446.

    Google Scholar 

  • Levi, J. D., J. L. Shennan, and G. P. Ebbon. 1979. Biomass from liquid n-alkanes. In Economic Microbiology, vol. 4, A. H. Rose (ed.). Academic Press, London.

    Google Scholar 

  • Mayrath, J., and K. Bayer. 1979. Biomass from whey. In Economic Microbiology, vol. 4, A. H. Rose (ed.). Academic Press, London.

    Google Scholar 

  • Mermelstein, N. H. 1989. Continuous fermenter produces natural flavor enhancers for foods and pet foods. Food Technol. 43(7):50–53.

    Google Scholar 

  • Mertz, W 1969. Chromium occurrence and function in biological systems. Physiol. Rev. 49:168–239.

    Google Scholar 

  • Mertz, W, and K. Schwartz. 1955. Impaired glucose tolerance as an early sign of dietary necrotic overdegradation. Arch. Biochem. Biophys. 58:504–506.

    Article  Google Scholar 

  • Mertz, W., E. W. Woepfer, E. E. Roginski, and M. M. Polansky. 1974. Present knowledge of the role of chromium. Federation Proc. 33:2275–2280.

    Google Scholar 

  • Nagodawithana, T. W., and F. Gutmanis. 1985. Method for the production of selenium yeast, U.S. Patent 4,530,846.

    Google Scholar 

  • O’Sullivan, D. A. 1978. BP contests petroprotein plant health issue. Chem. Eng. News 56(12):12.

    Article  Google Scholar 

  • Oura, E. 1983. Biomass from carbohydrates. In Biotechnology, vol. 3, H. Dellweg (ed.). VCH Publishing Co., Weinheim, West Germany.

    Google Scholar 

  • Pan, J. G., and J. S. Rhee. 1986. Biomass yield and energetic yields of oleaginous yeasts in batch culture. Biotechnol. Bioeng. 28:112–114.

    Article  Google Scholar 

  • Peppier, H. J. 1970. Food yeasts. In The Yeasts, vol. 3, A. H. Rose (ed.). Academic Press, London.

    Google Scholar 

  • Peppier, H. J. 1983. Fermented feeds and feed supplements. In Biotechnology vol. 5, G. Reed (ed.). VCH Publishing Co., Weinheim, West Germany.

    Google Scholar 

  • Peppier, H. J., and C. W Stone. 1976. Feed yeast products. Feed Management 27(8): 17–18.

    Google Scholar 

  • Ratledge, C. 1982. Microbial oils and fats: An assessment of their commercial potential. Prog. Industr. Microbiol. 16:119–206.

    Google Scholar 

  • Ratledge, C. 1985. Lipids. In Biotechnology, vol. 4, H. Pape and H. J. Rehm (eds.). VCH Publishing Co., Weinheim, West Germany.

    Google Scholar 

  • Reed, G. 1981. Use of microbial cultures: Yeast products. Food Technol. 35(1):89–94.

    Google Scholar 

  • Reed, G. 1982. Microbial biomass. In Prescott and Dunns Industrial Microbiology, 4th ed., G. Reed (ed.). AVI Publishing Co., Westport, Conn.

    Google Scholar 

  • Reese, E. T. and M. Mandels. 1984. Rolling with the times: Production and application of Trichoderma reesei cellulase. In Annual Reports on Fermentation Processes, vol. 7, G. T. Tsao (ed.). Academic Press, New York.

    Google Scholar 

  • Ridgeway, J. A., T. A. Lappin, B. M. Benjamin, J. B. Corns, and C. Akin. 1975. Single cell protein materials from ethanol, U.S. Patent 3,865,691.

    Google Scholar 

  • Robinson, M. E, H. M. Rea, G. M. Friend, R. D. H. Stewart, P. C. Scow, and C. D. Thomson. 1978. On supplementing the selenium intake of New Zealanders. 2. Prolonged metabolic experiments with daily supplements of selenomethionine, selenite and fish. Brit. J. Nutr. 39:589–600.

    Article  Google Scholar 

  • Roltz, C., and A. Humphrey. 1981. Microbial biomass from renewables: Review of alternatives. Adv. Biochem. Eng. 21:1–53.

    Google Scholar 

  • Rose, A. H. 1979. History and scientific basis of large-scale production of microbial biomass. In Economic Microbiology, vol. 4, A. H. Rose (ed.). Academic Press, London.

    Google Scholar 

  • Rotruck, J. T., A. L. Pope, H. E. Ganther, A. B. Ivanson, D. E. Hafeman, and W G. Hoekstra. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science 176:588–590.

    Article  Google Scholar 

  • Rouau, X., and E. Odier. 1986. Production of exocellular enzymes by the white-rot fungus Dichomitus squalens in cellulose containing liquid culture. Enzyme Microbiol. Technol. 8:22–26.

    Article  Google Scholar 

  • Sarwar, G., B. G. Shah, R. Mongeau, and K. Hoppner. 1985. Nucleic acid, fiber and nutrient composition of inactive dried food yeast products. J. Food Sci. 50:353–367.

    Article  Google Scholar 

  • Scrimshaw, N. S. 1975. Single cell protein for human consumption — an overview. In Single Cell Protein II, S. R. Tannenbaum and D. I. C. Wang (eds.). MIT Press, Cambridge, Mass.

    Google Scholar 

  • Scrimshaw, N. S. 1986. Nutritional and tolerance considerations in the feeding of single cell protein. In Food and Biotechnology, Proc. Int. Symp., Quebec, August.

    Google Scholar 

  • Seeley, R. D. 1977. Fractionation and utilization of baker’s yeast. Tech. Quarterly Master Brewer’s Assoc. Am. 14(1):35–39.

    Google Scholar 

  • Shay, L. K., H. R. Hunt, and G. H. Wegner. 1987. High productivity process for cultivating industrial microorganisms. J. Industr. Microbiol. 2:79–85.

    Article  Google Scholar 

  • Shay, L. K., and G. H Wegner. 1985. Improved fermentation process for producing Torula yeast. Food Technol. 39(10):61–66, 70.

    Google Scholar 

  • Shay, L. K., and G. H. Wegner. 1986. Nonpolluting conversion of whey permeate to food yeast protein. J. Dairy Sci. 59:676–683.

    Article  Google Scholar 

  • Sreekrishna, K., and R. C. Dickson. 1985. Construction of strains of S. cerevisiae that grow on lactose. Proc. Natl. Acad. Sci. USA 82(23):7909–7913.

    Article  Google Scholar 

  • Tamer, I. M., M. Ozilgen, and S. Ungan. 1988. Kinetics of riboflavin production by brewer’s yeasts. Enz. Microbiol. Technol. 10(12):754–756.

    Article  Google Scholar 

  • Waslien, C. I., D. H. Calloway, and S. Margen. 1970. Uric acid levels in men fed algae and yeast as protein sources. J. Food Sci. 35:294–298.

    Article  Google Scholar 

  • Wasserman, A. E., J. E. Hanson, and N. F. Alvare. 1961. Large-scale production of yeast in whey. J. Water Pollution Control Fed. 33:1090–1094.

    Google Scholar 

  • Wegner, G. H. 1983. Biochemical conversions by yeast fermentation at high cell densities, U.S. Patent 4,414,329.

    Google Scholar 

  • Yoon, S. H., and J. A. Rhee. 1983. Quantitative physiology of Rhodotorula glutinis for microbial lipid production. Proc. Biochem. 18(5):2–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Van Nostrand Reinhold

About this chapter

Cite this chapter

Reed, G., Nagodawithana, T.W. (1991). Food and Feed Yeast. In: Yeast Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9771-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9771-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-9773-1

  • Online ISBN: 978-94-011-9771-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics