Skip to main content

Explosive Welding in Planar Geometries

  • Chapter

Abstract

Of the various explosively welded components now available, clad plate, with a current world-wide production rate of about 25 000 m2 per annum, is in greatest demand by far. Although the clad plate has extensive direct application in the simplest planar forms in which it is produced, that is to say as rectangles or discs (for tube-plates), other forms may be obtained readily, using suitable fabrication techniques, from the flat clad plate. Notable examples of these are flat-or sphericalended cylindrical heat-exchangers and pressure vessels made of structural steel in which the clad inner surface is a relatively thin layer of corrosionresistant material such as stainless steel or titanium. For some applications, a single large plane clad plate can be machined to provide numerous transition joints which may be either planar themselves or tubular.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pocalyko, A. and Williams, C. P. Clad plate products by explosion bonding. Welding J., 43 (1964), 854–61.

    Google Scholar 

  2. Linse, V. D., Wittman, R. H. and Carlson, R. J. Defence Metals Information Center, Memo No. 225 (1967).

    Google Scholar 

  3. Otto, H. E. and Carpenter, S. H. Explosive cladding of large steel plates with lead. Welding J., 51 (1972), 467–73.

    Google Scholar 

  4. Du Pont. UK Patent No. 1,168,264.

    Google Scholar 

  5. Wright, E. S. and Bayce, A. E. Current methods and results in explosive welding. Central Institute for Industrial Research, Oslo, Sandefjord/Lillehammer (1964), Vol. 2, 448–72.

    Google Scholar 

  6. Williams, J. D., Ph.D. Thesis, Queen’s University of Belfast, (1969).

    Google Scholar 

  7. Richter, U. Influence of explosion cladding on the properties of the base material, Proc. 5th High Energy Rate Fabrication Conf., Denver (1975), 4.14. 1–15.

    Google Scholar 

  8. Hunt, J. N. Wave formation in explosive welding, Phil. Mag., 18, (1968), 669–80.

    Article  ADS  Google Scholar 

  9. Lucas, W. Ph.D. Thesis, Queen’s University of Belfast (1970).

    Google Scholar 

  10. Stone, J. M. The properties and applications of explosion-bonded dads. Select Conference on Explosive Welding (1968), Hove (The Welding Institute), Paper No. 10, 55–62.

    Google Scholar 

  11. Cook, M. A. Science of High Explosives, Reinhold, New York, (1958).

    Google Scholar 

  12. Popoff, A. A. US Patent No. 3,258,841.

    Google Scholar 

  13. Ruppin, D. The explosion welding of metals—investigation into the unstable processes associated with movement of cover plates. Colloquium on Welding by Thermochemical or Mechanical Energy, 1.1. W. Meeting, Warsaw, 1968.

    Google Scholar 

  14. Du Pont. UK Patent No. 923,746.

    Google Scholar 

  15. Holtzman, A. H. Canadian Patent No. 784,458.

    Google Scholar 

  16. Chadwick, M. D. Unpublished work.

    Google Scholar 

  17. Chudzik, B. UK Patent No. 1,042,952.

    Google Scholar 

  18. Chadwick, M. D. Some aspects of explosive welding in different geometries, ibid. ref. 10, Paper No. 2, 21–7.

    Google Scholar 

  19. Chadwick, M. D. Explosive welding using an impactor, Proc. 7th Int. Conf High Energy Rate Fabrication, Leeds (1981), 152–63.

    Google Scholar 

  20. Kruskov, Yu. N. et al. Mechanical properties of explosively welded titanium-aluminium composites at elevated temperatures, Svar. Proiz. (Welding Production), 22 (1975), April, 34–6.

    Google Scholar 

  21. Anderson, D. K. C. Explosive cladding—available products, properties and applications. Explosive Welding (The Welding Institute), London, (1975), Chapter 3, 8–11.

    Google Scholar 

  22. Boes, P. J. M. Some aspects of explosive welding. Publication No. 103 (1962), Tech. Centre for Metalworking, TNO, Delft, Holland.

    Google Scholar 

  23. Verbraak, C. A. Explosive forming can cause problems, Met. Prog., 83 (1963), 109–12.

    Google Scholar 

  24. Bouckaert, G. P., Hix, H. B. and Chelsus, J. Explosive-bonded tantalum-steel vessels, ibid. ref. 7, 4.4. 1–25.

    Google Scholar 

  25. Hayes, G. A., and Pearson, J. Metallurgical properties of some explosively welded metals, NAVWEPS Report 7925, NOTS TP 2950 (ASTIA AD-278354), June 1962.

    Google Scholar 

  26. UK Patent No. 1,369,879.

    Google Scholar 

  27. Hampel, H. Some aspects of explosive tube to tubeplate welding in heat exchangers, ibid. ref. 19,173–85.

    Google Scholar 

  28. Kennedy, J. E. Gurney energy of explosives: estimation of the velocity and impulse imparted to driven metal, Sandia Laboratories (New Mexico), Report No. SC-RR-70790 (1970).

    Book  Google Scholar 

  29. Jones, H. A theory of the dependence of rate of detonation of solid explosives on the diameter of the charge, Proc. Roy. Soc., 189 A (1946), 415–26.

    ADS  Google Scholar 

  30. Smith, E. G. Jr., Laber, D. and Linse, V. D. Explosive metal acceleration studies using flash X-Ray techniques, Proc. 3rd Int. Conf. of the Center for High Energy Forming, Vail, Colorado (1971), 1.4.1–26.

    Google Scholar 

  31. Eyring, H., Powell, R. E., Duffey, G. H. and Parlin, R. B. The stability of detonation, Chem. Rev., 45 (1949), 69.

    Article  Google Scholar 

  32. Shreffler, R. G. and Deal, W. E. Free surface properties of explosively driven plates, J. Appl.,Phys., 24 (1953), 44–8.

    Article  ADS  Google Scholar 

  33. Takizawa, Y., Izuma, T., Onzawa, T. and Fujita, M. An experimental study of the acceleration zone and the terminal velocity of flyer plate driven by explosive, ibid. ref. 7, 4.18, 1–42.

    Google Scholar 

  34. Smith, E. G. Jr., and Linse, V. D. The acceleration characteristics of explosively driven flyer plates, Proc. 6th Int. Conf High Energy Rate Fabrication, Essen (1977), 1.1.1–15.

    Google Scholar 

  35. Watanabe, M., Murakami, Z., Fukuyama, I., Mukai, Y., Makihata, T. and Matsushita, M. The effect of bonding conditions on the wave mode formed at explosive bonded interfaces, International Conference on Advances in Welding Processes (1970), London.

    Google Scholar 

  36. Onzawa, T. and Ishii, Y. Wave formation in explosive welding of metals, ibid. ref. 7, 4.8.1–27.

    Google Scholar 

  37. Hampel, H. and Richter, U. Formation of interface waves and dependence on the explosive welding parameters, ibid. ref. 19, 89–99.

    Google Scholar 

  38. Rice, M. H., Mcqueen, R. G., and Walsh, J. M. Compression of solids by strong shock waves, in A Seitz and A Turnbull (editors) Solid State Physics, Vol. 6, Academic Press, New York (1958).

    Google Scholar 

  39. Wright, E. S. and Bayce, A. E. US Patent No. 3,313,021.

    Google Scholar 

  40. Wittman, R. H. The influence of collision parameters on the strength and microstructure of an explosion welded aluminium alloy, 2nd Int. Symp. on Use of Explosive Energy for Manufacturing Metallic Materials of New Properties, Marianske Lazne (1973) Paper 10, 153–68.

    Google Scholar 

  41. Meyer, M. D. Impact Welding using Magnetically Driven Flyer Plates, Proc. of 4th Int. Conf. of the Center for High Energy Forming, Vail, Colorado (1973), 5.3.1–23.

    Google Scholar 

  42. Anon., Explosive Welding, Pacific Factory, March 1962, 6.

    Google Scholar 

  43. Shribman, V. Ph.D. Thesis, Queen’s University of Belfast. (1968).

    Google Scholar 

  44. Cowan, G. R. and Holtzman, A. H. Flow configurations in colliding plates: explosive bonding, J.Appl., Phys., 34 (1963), 928–39.

    Article  ADS  Google Scholar 

  45. Zakharenko, I. D. The determining processes for explosive welding, ibid. ref. 34, 1.9.1–7.

    Google Scholar 

  46. Efremov, V. V. and Zakharenko, I. D. Determination of the upper Hmit to explosive welding, Fizika Goreniyai Vzryva, 12, (1976), 255–60.

    Google Scholar 

  47. Chadwick, M. D. Graham, B. L. and Lowes, J. M. (IRD), Unpubhshed work on explosive welding of zirconium alloys to type 304 stainless steel.

    Google Scholar 

  48. Gurney, R. W. The initial velocities of fragments from bombs, shells, grenades, Ballistic Research Laboratories (Aberdeen Proving Ground, Maryland), Report No. 405 (1943).

    Google Scholar 

  49. Duvall, G. E. and Erkman, J. O. Acceleration of a plate by high explosive. Tech. Report No. I., Stanford Research Institute, Project No. GU-2426 (1958).

    Google Scholar 

  50. Bahrani, a. S., Black, T. J. and Crossland, B. The mechanics of wave formation in explosive Welding, Proc. R. Soc., A296 (1967), 123–36.

    ADS  Google Scholar 

  51. Bergmann, O. R., Cowan, G. R. and Holtzman, A. H. Experimental evidence of jet formation during explosive cladding. Trans. TMS-AIME, 236 (1966), 646–53.

    Google Scholar 

  52. Godunov, S. K., Deribas, A. A., Zabrodin, A. V. and Kozin, N. S. Hydrodynamic effects in colliding solids,J. Comput. Phys., 5 (1970), 517–39.

    Article  ADS  Google Scholar 

  53. El-Sobky, H. and Blazynski, T. Z. Experimental investigation of the mechanics of explosive welding by means of a liquid analogue, ibid. ref. 7, 4.5.1–21.

    Google Scholar 

  54. Cowan, G. R., Bergmann, O. R. and Holtzman, A. H. Mechanism of bond zone wave formation in explosion-clad metals, Metall. Trans., 2 (1971), 3145–55.

    Article  Google Scholar 

  55. Bahrani, A. S. Ph.D. Thesis, Queen’s University of Belfast (1965).

    Google Scholar 

  56. Buchwald, J. and Fleishman, S. L. Manufacture and testing of hollow forgings with explosion bonded bores, ASME Petroleum Division and Pressure Vessels and Piping Division Joint Conference, Dallas (1968), 68-PET-18.

    Google Scholar 

  57. Sakhnovskaya, E. B., Sedykh, V. S., and Trykov, Yu. P. Properties of explosion welded joints between austenitic steel and aluminium alloys, Svar. Proiz. (Welding Production), 18 (1971), No. 7, 34–6.

    Google Scholar 

  58. Hammerschmidt, M. and Kreye, H. Microstructural features determining the properties of explosive welds, ibid. ref. 19, 60–70.

    Google Scholar 

  59. Chadwick, M. D. and Graham, B. L. (IRD), Unpublished work on explosive welding of an Al-Zn-Mg alloy to maraging steel, (1972–77).

    Google Scholar 

  60. Czajkowski, H. Explosive welding of mild steel-aluminium prefabricates, Int. Cof. on the Use of High Energy Rate Methods for Forming, Welding and Compaction, University of Leeds (1973), 14.1–12.

    Google Scholar 

  61. Trueb, L. F. Microstructural effects of heat treatment on the bond interface of explosively welded metals, Metall. Trans., 2 (1971), 145–53.

    Article  Google Scholar 

  62. Keller, K. Investigations of explosive cladding, Z. Metallkunde, 59 (1968), No. 6, 503–13.

    Google Scholar 

  63. Burkhardt, A., Hornbogen, E. and Keller, K. Transition to turbulent flow in crystals, Z. Metallkunde, 58 (1967), 410–5.

    Google Scholar 

  64. Christensen, K. T., Egly, N. S. and Alting, L. Explosive welding of tubes to tubeplates, Metall. Constr. Br. Weld. J., 5 (1973), 412–9.

    Google Scholar 

  65. Stivers, S. W. and Wittman, R. H. Computer selection of the optimum explosive loading and weld geometry, ibid. ref. 7, 4.2.1–16.

    Google Scholar 

  66. Prümmer, R. Explosive welding of a molybdenum-high temperature resistant alloy compound,ibid. ref. 19, 186–91.

    Google Scholar 

  67. Kury, J. W., Hornig, H. C., Lee, E. L., Mcdonnel, J. L., Ornellas, D. L., Finger, M., Strange, F. M. and Wilkins, M. L. Metal acceleration by chemical explosives,4th Symp. on Detonation, (1965), ONR ACR-126, 1–13.

    Google Scholar 

  68. Schmidtmann, E. and Paul, H. U. The elastic-plastic deformation of metal material under extreme dynamic loading. Arch. Eisenhuttenwesen, 36 (1965), No. 10, 699–707.

    Google Scholar 

  69. Cleland, D. B. (Nobel’s Explosives Co. Ltd.), Private communication.

    Google Scholar 

  70. Wylie, H. K., Williams, P. E. G. and Crossland, B. An experimental investigation of explosive welding parameters’. Queen’s University of Belfast, Dept. of Mech. Eng. Report No. 514 (1970).

    Google Scholar 

  71. El-Sobky, H. A. Ph.D. Thesis, The University of Leeds (1979).

    Google Scholar 

  72. AlHassani, S. T. S. and Salem, S. A. L. Explosive bonding of multilayer composites (theory and experiments), ibid. ref. 19, 208–17.

    Google Scholar 

  73. Aziz, A. K., Hurwitz, H. and Sternberg, H. M., Energy transfer to a rigid piston under detonation loading, Phys. Fluids, 4 (1961), 380–4.

    Article  ADS  MATH  Google Scholar 

  74. Trutnev, V. V. et al. Comparative assessment of the quahty of the explosive joining of aluminium to titanium, steel and nickel, Svar. Proiz. (Welding Production), 20 (1973), No. 7, 19–21.

    Google Scholar 

  75. Davenport, D. E. Explosive welding, ASTME Creative Manufacturing Seminars (1961–2), Paper SP 62–77.

    Google Scholar 

  76. Chladek, L. Effects of microgeometry and physico-chemical state of surfaces on the quality of joints in explosive cladding of metals ibid. ref. 40, Paper No. 14, 199–206.

    Google Scholar 

  77. Chadwick, M. D. and Lowes, J. M. (IRD), Unpublished work.

    Google Scholar 

  78. Lowes, J. M. (IRD), Unpubhshed work.

    Google Scholar 

  79. Minshall, S. Properties of elastic and plastic waves determined by pin contactors and crystals, J. Appl.,Phys., 26 (1955), 463–9.

    Article  ADS  Google Scholar 

  80. Hoskins, N. E., Allan, J. W. S., Bailey, W. A., Lethaby, J. W. and Skidmore, I. C. The motion of plates and cyhnders driven by detonation waves at tangential incidence, ibid. ref. 67. 14–26.

    Google Scholar 

  81. Crossland, B., Wylie, H. K., Williams, P. E. G. and Bahrani, A. S. Explosive welding of cylindrical surfaces, ibid. ref. 40, Paper No. 7, 97–133.

    Google Scholar 

  82. Deribas, a. a., Kudinov, V. M., Matveenkov, F. I. and Simonov, V. a. Determination of the impact parameters of flat plates in explosive welding, Fizika Goreniya i Vzryva (Combustion, Explosion and Shock Waves), 3, (1967), No. 2, 291–8.

    Google Scholar 

  83. Shribman, V. and Crossland, B. An Experimental Investigation of the velocity of the flyer plate in explosive welding, Proc. of the 2nd Int. Conf. of the Center for High Energy Forming, Denver (1969), 7.3.1.

    Google Scholar 

  84. Walsh, J. M. and Christian, R. H. Equations of state of metals from shock wave measurements, Phys. Review, 97 (1955), 1544.

    Article  ADS  Google Scholar 

  85. Deffet, L. and Fosse, C. Les Bases des Methodes de Placage des Metaux par rAction des Explosifs, IFCE Conference (1966).

    Google Scholar 

  86. Holtzman, a. H. and Rudershausen, C. G. Recent advances in metal working with explosives, Sheet Metal Industries, 39, (1962), 399–414.

    Google Scholar 

  87. Ribovich, J., Watson, R. W. and Gibson, F. C. Instrumented card-gap test, AIAA Journal, 6 (1968), 1260–3.

    Article  ADS  Google Scholar 

  88. Barker, L. M. and Hollenbach, R. E. System of Measuring the Dynamic Properties of Materials, Rev. Sci. Instr., 35 (1964), 742.

    Article  ADS  Google Scholar 

  89. Prümmer, R. A. A new and simple method of determination of the parameters of explosive welding and latest results, J. of the Industrial Explosives Society of Japan, 35 (1974), No. 3, 121–26.

    Google Scholar 

  90. Held, M. Theoretical and practical aspects of explosive welding ibid. ref. 19, 113–31.

    Google Scholar 

  91. Willis, J. Explosive welding for jointing conductors. Electrical Times, 23 July 1970, 43–44.

    Google Scholar 

  92. Addison, H. J. Jr., Fogg, W. E., Betz, G. and Hussey, F. W. Explosive welding of aluminium alloys. Welding J., Res. Supplement, 42 (1963), 359s-64s.

    Google Scholar 

  93. Kameishi, M., Higuchi, R. and Niwatsukino, T. Canadian Patent No. 794,093.

    Google Scholar 

  94. Polhemus, F. C. Explosive welding development at Pratt and Whitney aircraft, Proc. 1st Int. Conf of the Center for High Energy Forming, Denver (1967), 1.3.1.

    Google Scholar 

  95. Bement, L. J. Small-scale explosion seam welding. Welding J., 52 (1973), 147–54.

    Google Scholar 

  96. Otto, H. E. and Wittman, R. H. Evaluation of NASA-Langley Research Center explosion seam welding,NASA CR-2874 (1977).

    Google Scholar 

  97. Addison, H. J. Jr. Explosive Welding, ASME Paper No. 64-MD-47 (1964).

    Google Scholar 

  98. Du Pont, UK Patent No. 1,085, 683.

    Google Scholar 

  99. Denyachenko, O. A. The physical properties of explosion-welded butt joints in aluminium, Avt. Svarka. (Automatic Welding), 28 (1975), 56–7.

    Google Scholar 

  100. Velten, R. Practical Applications of Explosive Welding, ibid. ref. 41, 8.4.1–28.

    Google Scholar 

  101. Asahi Kasei Kogyo Kabushiki Kaisha Corporation. UK Patent No. 1,010,859.

    Google Scholar 

  102. Persson, I. Explosive welding indoors in serial production, ibid. ref. 40, 261–70.

    Google Scholar 

  103. Jackson. P. W. (IRD). UK Patent Application No. 24299/78.

    Google Scholar 

  104. Linse, V. D. The Application of Explosive Welding to Turbine Components, ASME Paper No. 74-GT-85 (1974).

    Google Scholar 

  105. Orava, R. N. and Wittman, R. H. Techniques for the control and application of explosive shock waves, ibid. ref. 7, 1.1.1–27.

    Google Scholar 

  106. Holtzman, a. H. Explosive dads, ibid. ref. 5, 489–516.

    Google Scholar 

  107. Dynamit Nobel Aktiengesellschaft. UK Patent No. 1,192,517.

    Google Scholar 

  108. Chadwick, M. D. An assessment of variable angle techniques used to determine minimum collision angles and impact velocities for explosive welding, ibid. ref. 34, 1.6.1–15.

    Google Scholar 

  109. Willis, J. Applications of Explosive Welding,ibid. ref. 21, Chapter 10, 40–4.

    Google Scholar 

  110. Shaffer, J. W., Cranston, B. H. and Krauss, G. Explosive bonding of metal foils to high alumina ceramic substrates, ibid. ref. 7, 4.12.1–28.

    Google Scholar 

  111. Cranston, B. H. UK Patent No. 1,353,242.

    Google Scholar 

  112. Embury, J. D., Petch, N. J., Wraith, A. E. and Wright, E. S. The fracture of mild steel laminates. TMS-AIME, 239 (1967), 114–8.

    Google Scholar 

  113. Podgornyi, a. N., Guz, I. S. and Mileshkin, M. B. Failure of laminated composites formed by explosive welding,Avt. Svarka (Automatic Welding), 28 (1975), 23–5.

    Google Scholar 

  114. Kelly, A. and Davies, G. J. Principles of fibre reinforcement. Met. Reviews, 10 (1965), No. 37, 1–77.

    Article  Google Scholar 

  115. Cratchley, D. Experimental aspects of fibre-reinforced metals, ibid. ref. 114, 79–144.

    Google Scholar 

  116. Jarvis, C. V. and Slate, P. M. B. Explosive fabrication of composite materials, Nature, 220 (1968), 782–3.

    Article  ADS  Google Scholar 

  117. Slate, P. M. B. and Jarvis, C. V. Strengthening of metals by explosive incorporation of strong wires,J. Inst. Metals, 100 (1972), 217–24.

    Google Scholar 

  118. Fleck, J., Laber, D. and Leonard, L. Explosive welding of composite materials,J. Composite Materials, 3 (1969), 699–701.

    Google Scholar 

  119. Reece, O. Y. Reported in Iron Age, 205 (1970), 60.

    Google Scholar 

  120. Reece, O. Y. Molybdenum wire reinforced columbium composites, ibid. ref. 30, 2.1.1–11.

    Google Scholar 

  121. Wylie, H. K., Williams, J. D. and Crossland, B. Explosive fabrication of fibre reinforced aluminium, ibid. ref. 30, 2.2.1–26.

    Google Scholar 

  122. McClelland, H. T. and Otto, H. E. Explosive compaction of composites, ibid. ref. 41, 9.1.1–26.

    Google Scholar 

  123. Bhalla, a. K. and Williams, J. D. Production of stainless steel wire-reinforced aluminium composite sheet by explosive compaction, J. Materials Science, 12 (1977), 522–30.

    Article  ADS  Google Scholar 

  124. Gonzales, A., Cuyas, J. C. and Cusminsky, G. Explosive welding of aluminium and aluminium alloy sheet steel mesh reinforced composites, ibid. ref. 19, 199–207.

    Google Scholar 

  125. Dabrowski, W. The influence of the technological parameters on the mechanical properties of high strength aluminium matrix explosively manufactured composites, ibid. ref. 19, 218–23.

    Google Scholar 

  126. Jackson, P. W., Baker, A. A., Cratchley, D. and Walker, P. J. The fabrication of components from aluminium reinforced with silica fibres, Powder Met., 11 (1968). No. 21, 1–22.

    Google Scholar 

  127. El-Sobky, H. and Blazynski, T. Z. Analysis of the mechanism of collision in multilayered composites, ibid. ref. 19, 100–12.

    Google Scholar 

  128. Raybould, D. On the properties of material fabricated by dynamic powder compaction (D.P.C.), ibid. ref. 19, 261–73.

    Google Scholar 

  129. Chadwick, M. D. and Jackson, P. W. Explosive welding in pressure vessels and heat exchangers. Developments in Pressure Vessel Technology—3, ed. Nichols, R. W., Applied Science Pubhshers Ltd. Barking, Essex (1980), Chapter 7, 217–65.

    Google Scholar 

  130. Du Pont. UK Patent No. 1,062,320.

    Google Scholar 

  131. Cleland, D. B. Industrial application of’Kelomet’ explosively clad metal, ibid. ref. 40, Paper No. 18, 2311.

    Google Scholar 

  132. British Standard Code of Practice CP3003: Lining of vessels and equipment for chemical processes. Part 9; Titanium (1970).

    Google Scholar 

  133. Turner, J. C. and Dawson, P. H. Explosive welding as a manufacturing technique, Proc. Int. Conf. on Welding and Fabrication in the Nuclear Industry (BNES), London (1979), Paper No. 42.

    Google Scholar 

  134. Takizawa, Y. Explosive cladding industry and researches on its technology in Japan, ibid. ref. 40, Paper No. 11, 171–5.

    Google Scholar 

  135. Hix, H. B. Commercial explosive bonding,ibid. ref. 34, 2.1.1–18.

    Google Scholar 

  136. Izuma, T. and Baba, N. Development of transition joint for cryogenic temperature, ibid. ref. 34, 2.14, 1–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Chadwick, M.D., Jackson, P.W. (1983). Explosive Welding in Planar Geometries. In: Blazynski, T.Z. (eds) Explosive Welding, Forming and Compaction. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9751-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9751-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-9753-3

  • Online ISBN: 978-94-011-9751-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics