Skip to main content

Choice of Radionuclides for Scintigraphy

  • Chapter
Radionuclide Imaging in Drug Research

Abstract

Radiopharmaceuticals used for imaging are administered to subjects parenterally and the emissions from their gamma-labels are detected externally. This places some constraint on the type of substance to be labelled, but more importantly on the radionuclide to be employed as the radiolabel. The agents are normally administered at low concentrations and low frequency (often only once) and the radionuclides commonly employed in scintigraphy are either carrier-free or available at high specific activities. Consequently the question of toxicity is not often a serious limitation, and the other requirements for parenteral injection, such as sterility, apyrogenicity and non-antigenicity, can usually be satisfied. The choice of radionuclide is much more restrictive, for there is an over-riding requirement to maximise the detectable photon yield while minimising the radiation dose absorbed by the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins P, Hawkins L A (1965) Detection of venous thrombosis in the legs, Lancet 2: 1217–1219

    Article  Google Scholar 

  • Blau M, Bender M A (1962) Radiomercury (Hg203) labeled neohydrin: a new agent for brain tumor localization, J. Nucl. Med. 3: 83–93

    Google Scholar 

  • Bolton A E (1977) Radioiodination Techniques, Review 18, The Radiochemical Centre, Amersham

    Google Scholar 

  • Bolton A E, Hunter W M (1973) The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Application to the radioimmunological assay, Biochem. J. 133: 529–538

    Google Scholar 

  • Boyd G S, Merrick M V, Monks R, Thomas I L, Ross A H McL (1981) 75Se-labeled bile acid analogs. New radiopharmaceuticals for investigating the enterohepatic circulation, J. Nucl. Med. (in press)

    Google Scholar 

  • Callery P S, Faith W F, Loberg M D, Fields A T, Harvey E B, Cooper M D (1976) Tissue distribution of technetium-99m and carbon-14 labeled N-(2,6-dimethylphenylcarbamoymethyl)iminodiacetic acid, J. Med. Chem. 19: 962–964

    Article  Google Scholar 

  • Charkes N D, Sklaroff D M (1963) The use of iodine 125 in thyroid scintiscanning, Am. J. Roentgenol. Radium Ther. Nucl. Med. 90: 1052–1058

    Google Scholar 

  • Chatal J F, Charbonnel B, Guihard R (1977) Un nouveau radiotraceur pour la scintigraphic des surrénales: le 6-méthyl-75Se-sélénocholésterol. Son intérêt par rapport au 131I-19-iodocholésterol, Nouv. Presse Med. 6: 1145

    Google Scholar 

  • Cotton F A, Wilkinson G (1972) Advanced Inorganic Chemistry, 3rd edn Wiley, New York, pp972–990

    Google Scholar 

  • de Kieviet W (1981) Tc-glucoheptonate, chemical structure and tissue distribution, J. Labelled Comp. Radiopharm. 18: 136–137

    Google Scholar 

  • De Riemer L H, Meares C F, Goodwin D A, Diamanti C I (1979) BLEDTA: tumour localization by a bleomycin analogue containing a metal-chelating group, J. Med. Chem. 22: 1019–1023

    Article  Google Scholar 

  • Eckelman W C, Levenson S M (1977) Radiopharmaceuticals labelled with technetium, Int. J. Appl. Radiat. Isot. 28: 67–82

    Article  Google Scholar 

  • Emery T, Hoffer P B (1980) Siderophore-mediated mechanism of gallium uptake demonstrated in the microorganism Ustilago sphaerogena, J. Nucl. Med. 21: 935–939

    Google Scholar 

  • Fells I G, Kaplan E, Greco J, Veatch R (1959) Incorporation in vivo of P32 from condensed phosphates, Proc. Soc. Exp. Biol. Med. 100: 53–55

    Google Scholar 

  • Fowler J S (1978) in: Heindel N D, Burns H D, Honda T, Brady L W (eds) The Chemistry of Radiopharmaceuticals, Masson, New York, ppl09–122

    Google Scholar 

  • Hamilton R G, Alderson P O (1977) A comparative evaluation of techniques for rapid and efficient in vivo labeling of red cells with (99mTc) pertechnetate, J. Nucl. Med. 18: 1010–1013

    Google Scholar 

  • Kaye M, Silverton S, Rosenthall L (1975) Technetium-99m-pyrophosphate: studies in vivo and in vitro, J. Nucl. Med. 16: 40–45

    Google Scholar 

  • Krohn K, Sherman L, Welch M (1972) Studies of radioiodinated fibrinogen 1. Physicochemical properties of the ICL, chloramine-T and electrolytic reaction products, Biochem. Biophys. Acta 285: 404–413

    Google Scholar 

  • Lebowitz E, Greene M W, Fairchild R, Bradley-Moore P R, Atkins H L, Ansari A N, Richards P, Belgrave E (1975) Thallium-201 for medical use. I. J. Nucl. Med. 16: 151–155

    Google Scholar 

  • Libson K, Deutsch E, Barnett B L (1980) Structural characterization of a 99Tc-disphosphonate complex. Implications for the chemistry of 99mTc skeletal imaging agents, J. Am. Chem. Soc. 102: 2476–2478

    Article  Google Scholar 

  • Lin M S, Winchell H S (1972) A “kit” method for the preparation of a technetium-tin (II) colloid and a study of its properties, J. Nucl. Med. 13: 58–65

    Google Scholar 

  • Loberg M D, Fields A T (1978) Chemical structure of technetium-99m-labelled N-(2,6-dimethyl -phenylcarbamoylmethyl)-iminodiacetic acid (Tc-HIDA), Int. J. Appl. Radiat. Isot. 29: 167–173

    Article  Google Scholar 

  • Loberg M D, Cooper M, Harvey E, Callery P, Faith W (1976) Development of new radiopharmaceuticals based on N-substitution of iminodiacetic acid, J. Nucl. Med. 17: 633–638

    Google Scholar 

  • Mathias C J, Heaton W A, Welch M J, Douglas P G Kelly J D (1981) Comparison of In-111-oxine and In-111-acetylacetone for the labelling of cells: in vivo and in vitro biological testing, Int. J. Appl. Radiat. Isot. (in press)

    Google Scholar 

  • McAfee J G, Subramanian G (1969) in: Freeman L M, Johnson P M (eds) Clinical Scintillation Scanning, Hoeber and Row, New York, pp50–53

    Google Scholar 

  • Pettit W A, DeLand F H, Bennett S J, Goldenberg D M (1980) Improved protein labeling by stannous tartrate reduction of pertechnetate, J. Nucl. Med. 21: 59–62

    Google Scholar 

  • Riley A L M (1979) The development of selenium-75 cholesterol analogues, J. Labelled Comp. Radiopharm. 16: 28–29

    Google Scholar 

  • Robinson G D, Lee A W (1975) Radioiodinated fatty acids for heart imaging: iodine monochloride addition compared with iodide replacement labeling, J. Nucl. Med. 16: 17–21

    Google Scholar 

  • Stang, L G, Richards P (1964) Tailoring the isotope to the need, Nucleonics 22: 46–49

    Google Scholar 

  • Sundberg M W, Meares C F, Goodwin D A, Diamanti C I (1974) Chelating agents for the binding of metal ions to macromolecules, Nature 250: 587–588

    Article  Google Scholar 

  • Ter-Pogossian M M, Phelps M E, Hoffman E J, Mullani N A (1975) A positron-emission transaxial tomograph for nuclear imaging (PETT), Radiology 114: 89–98

    Google Scholar 

  • Thakur M L, Segal A W, Louis L, Welch M J, Hopkins J, Peters T J (1977) Indium-ill-labeled cellular blood components: mechanism of labeling and intracellular location in human neutrophils, J. Nucl. Med. 18: 1022–1026

    Google Scholar 

  • Wagner H N, Emmons H (1966) in: Andrews G A, Kniseley R M, Wagner H N (eds) Radioactive Pharmaceuticals, U.S.A.E.C. Symposium Series No. 6, ppl-32

    Google Scholar 

  • Welch M J, Welch T J (1975) in: Subramanian G, Rhodes B A, Cooper J F, Sodd V J (eds) Radiopharmaceuticals, Society of Nuclear Medicine, New York, pp73–79

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 C.G. Wilson, J.G. Hardy, M. Frier and S.S. Davis

About this chapter

Cite this chapter

Kelly, J.D. (1982). Choice of Radionuclides for Scintigraphy. In: Wilson, C.G., Hardy, J.G., Frier, M., Davis, S.S. (eds) Radionuclide Imaging in Drug Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9728-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9728-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-9730-4

  • Online ISBN: 978-94-011-9728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics