Coprophagy and related strategies for digesta utilization

  • H. Hörnicke
  • G. Björnhag


The purpose of this review is to survey a sector of digestive specializations in search for common principles. It is concerned with the different forms of reingestion by which animals make use of bacterial products synthesized in the large intestine. In addition, digesta reflux within the gastrointestinal tract and digesta transfer between animals are treated. The approach is partly speculative in the hope of stimulating discussion and new experimental studies. For the same reason it is not limited to herbivores, and sometimes even includes findings from invertebrates.


Ground Squirrel Faecal Pellet Proximal Colon Related Strategy Guinea Fowl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altmann, D. (1969). Hamen und Koten bei Säugetieren. Neue Brehm-Bücherei 404, WittenbergGoogle Scholar
  2. 2.
    Araya, H., Araya, J., Negrete, A. and Tagle5 M. A. (1973). Coprofagia en ratas alimen- tadas con dietas de differente valor proteico. Arch. Latinoamer. Nutr., 23, 485–493Google Scholar
  3. 3.
    Barnes, R. H. (1962). Nutritional implications of coprophagy. Nutr. Rev., 20, 289–291PubMedCrossRefGoogle Scholar
  4. 4.
    Baverstock, P. R., Watts, C. H. S. and Spencer, L. (1979). Water-balance of small lactating rodents - V. the total waterbalance picture of the mother-young unit. Comp. Biochem. Physiol., 63A, 247–252CrossRefGoogle Scholar
  5. 5.
    Björnhag, G. (1972). Separation and delay of contents in the rabbit colon. Swed. J. Agric. Res., 2, 125–136Google Scholar
  6. 6.
    Björnhag, G. and Sjöblom, L. (1977). Demonstration of coprophagy in some rodents. Swed. J. Agric. Res., 1, 105–114Google Scholar
  7. 7.
    Björnhag, G. and Sperber, I. (1977). Transport of various food components through the digestive tract of turkey, geese and guinea fowl. Swed. J. Agric. Res., 1, 57–66Google Scholar
  8. 8.
    Björnhag and co-workers, unpublished resultsGoogle Scholar
  9. 9.
    Bonnafous, R. (1973). Quelques aspects de la Physiologie colique en relation avec la dualité de l’excretion fécale chez Ie lapin. Thèse Doctorat Sciences, ToulouseGoogle Scholar
  10. 10.
    Borgström, B., Dahlquist, A., Gustafsson, B. E., Lundh, G. and Malmquist, J. (1959). Trypsin, invertase and amylase content of faeces of germ-free rats. Proc. Soc. Exp. Biol. Med., 102,’ 154–155Google Scholar
  11. 11.
    Catala, J. (1978). Recherches sur la physiologie digestive chez Ie lapin par une étude experimentale de la fonction pancréatique. Thèse Docteur d’Etat, ToulouseGoogle Scholar
  12. 12.
    Charles-Dominique, P. and Hladik, C. M. (1971). Le lepilemur de sud de Madagascar: Ecologie, alimentation et vie sociale. La Terre et la Vie, 1, 3–66Google Scholar
  13. 13.
    Clauss, W. (1978). Resorption und Sekretion von Wasser und Elektrolyten im Colon des Kaninchens im Zusammenhang mit der Bildung von Weichkot und Hartkot. Dissertation. Universität HoheneimGoogle Scholar
  14. 14.
    Clauss, W., Ehrlein, H.-J. and Hörnicke, H. (1978). Kontraktionsformen und Kon- tractionsfrequenzen am proximalen Kolon des Kaninchens. Z. Gastroenterol., 7, 446–456Google Scholar
  15. 15.
    Davis, S. D. (1969). Hibernation: Intestinal protozoa populations in ground squirrels. Exp. Parasitol., 25, 156–165CrossRefGoogle Scholar
  16. 16.
    Dieterlein, F. (1959). Das Verhalten des syrischen Goldhamsters (Mesocricetus auratus Waterhouse). Z. Tierpsychol., 16, 47–103CrossRefGoogle Scholar
  17. 17.
    Ewer, R. F. (1967). The behaviour of the African giant rat. (Cricetomy gambianus Waterhouse). Z. Tierpsychol., 24, 6–79PubMedCrossRefGoogle Scholar
  18. 18.
    Fioramonti, J. and Ruckebusch, Y. (1976). La motricité caecale chez Ie lapin. III. Dualité de l’excrétion fécale. Ann. Rech. Vét., 1, 281–295Google Scholar
  19. 19.
    Fitzgerald, R. J., Gustafsson, B. E. and McDaniel, E. G. (1964). Effects of coprophagyon intestinal microflora in rats. J. Nutr., 84, 155–160PubMedGoogle Scholar
  20. 20.
    Francis-Smith, K. and Wood-Gush, D. G. (1977). Coprophagia as seen in thoroughbred foals. Equine Vet., J., 9, 155–157CrossRefGoogle Scholar
  21. 21.
    Galef, B. G. Jr. (1979). Investigation of the functions of coprophagy in juvenile rats. J. Comp. Physiol. Psychol., 93, 295–305CrossRefGoogle Scholar
  22. 22.
    Gärtner, K. and Pfaff, J. (1979). The forestomach in rats and mice, a food store without bacterial protein digestion. Zbl. Vet. Med. A., 26, 530–541Google Scholar
  23. 23.
    Gallouin, F., Demaux, G. and Le Bars, H. (1978). Le comportement de caecotrophie du lapin. Cuniculture, 5, 193–198Google Scholar
  24. 24.
    Ghazal, A. M. and Avery, R. A. (1976). Observations on coprophagy and the transmission of hymenolepis-nana infections in mice. Parasitology, 73, 39–45PubMedCrossRefGoogle Scholar
  25. 25.
    Griffiths, M. and Davies, D. (1963). The role of the soft pellets in the production of lactic acid in the rabbit stomach. J. Nutr., 80, 171–180PubMedGoogle Scholar
  26. 26.
    Haga, R. (1960). Observations on the ecology of the Japanese pika. J. Mammal., 41, 200–212CrossRefGoogle Scholar
  27. 27.
    Harder, W. (1950). Zur Morphologie und Physiologie des Blinddarms der Nagetiere. Verh. Dtsch. Zool. Ges., 2, 95–109Google Scholar
  28. 28.
    Hill, W. C. O., Porter, A., Bloom, R. T., Seago, J. and Southwide, M. D. (1957). Field and laboratory studies on the naked mole rat, Heterocephalus glaber. Proc. Zool. Soc. London, 128, 455–514CrossRefGoogle Scholar
  29. 29.
    Hörnicke, H. and co-workers, unpublished resultsGoogle Scholar
  30. 30.
    Hörnicke, H. and Mackiewicz, A. (1975). Bedeutung der Caecotrophie für Stärkeabbau und Bildung von D- and L-Lactat im Magen des Kaninchens. Miscellaneous Papers, Landbouwhogeschool Wageningen, 11, 93–98Google Scholar
  31. 31.
    Hötzel, D. and Barnes, R. (1966). Contributions of the intestinal microflora to the nutrition of the host. Vitam. Horm., 24, 115–171PubMedCrossRefGoogle Scholar
  32. 32.
    Hoover, W. H. and Heitmann, R. N. (1975). Cecal nitrogen metabolism and amino acid absorption in the rabbit. J. Nutr., 105, 245–252PubMedGoogle Scholar
  33. 33.
    Ingles, L. G. (1961). Reingestion in the mountain beaver. J. Mammal., 42, 411–412CrossRefGoogle Scholar
  34. 34.
    Jilge, B. (1979). Zur circadianen Caecotrophie des Kaninchens. Z. Versuchstierkunde, 21,302–312Google Scholar
  35. 35.
    Jilge, B. and Meyer, H. (1975). Coprophagy-dependent changes of anaerobic bacterial flora in stomach and small intestine of rabbit. Z. Versuchstierkunde, 17, 308–314Google Scholar
  36. 36.
    Kandatsu, M., Yoshihara, I. and Yoshida, T. (1959). Studies on cecal digestion. II. Excretion of hard and soft feces and fecal composition in rabbits. Jpn. J. Zootechn. Sci., 29, 366–371Google Scholar
  37. 37.
    Knutson, R. S., Francis, R. S., Hall, J. L., Moore, B. H. and Heisinger, J. F. (1977) Ammonia and urea distribution and urease activity in the gastrointestinal tract of rabbits (Oryctolagus and Sylvilagus). Comp. Biochem. Physiol., 58, 151–154CrossRefGoogle Scholar
  38. 38.
    Kon, S. K. (1945). Synthesis of vitamins by micro-organisms of the alimentary tract. Proc. Nutr. Soc., 3, 217–229PubMedCrossRefGoogle Scholar
  39. 39.
    Kon, S. K. (1962). Vitamins A and B12 and some comments on refection. Proc. R. Soc., 156, 351–365Google Scholar
  40. 40.
    Kronfeld, D. S. (1973). Diet and the performance of racing sled dogs. J. Am. Vet. Med. Assoc., 162, 470–473PubMedGoogle Scholar
  41. 41.
    Kuhn, H.-J. (1964). Zur Kenntnis von Bau und Funktion des Magens der Schlankaffen (Colobinae). Folia Primatol., 2, 193–221CrossRefGoogle Scholar
  42. 42.
    Kiihme, W. (1965). Communal food distribution and division of labour in African hunting dogs. Nature (London), 205, 443–444CrossRefGoogle Scholar
  43. 43.
    Kunstyr, I., Peters, K. and Gärtner, K. (1976). Investigations on the function of the rat forestomach. Lab. Anim. Sci., 26, 166–170PubMedGoogle Scholar
  44. 44.
    Leng, E. (1978). Absorption of inorganic ions and volatile fatty acids in the rabbit caecum. Br. J. Nutr., 40, 509–519PubMedCrossRefGoogle Scholar
  45. 45.
    Leng, E., Clauss, W. and Hörnicke, H. (1977). Colon passage time in rabbits in relation to the formation of caecotrophes. Zbl. Vet. Med. A., 24, 324–332Google Scholar
  46. 46.
    Leng, E. and Hörnicke, H. (1975). Diurnal variations in composition of cecal contents in rabbits. Z. Versuchstierkd., 17, 285–299Google Scholar
  47. 47.
    Leon, M. A. (1974). Maternal pheromone. Physiol. Behav., 13, 441–453PubMedCrossRefGoogle Scholar
  48. 48.
    Lev, M., Alexander, R. H. and Levenson, S. M. (1966). Stability of the lactobacillus population in faeces and stomach contents of rats prevented from copography. J. Bacteriol, 92, 13PubMedGoogle Scholar
  49. 49.
    Lutton, C. and Chevallier, F. (1973). Coprophagy in the white rat: quantitative aspects and time relations with the food intakes. J. Physiol (Paris), 66, 219–228Google Scholar
  50. 50.
    Mameesh, M. S. and Johnson, B. C. (1959). Production of dietary vitamin K deficiency in the rat. Proe. Soc. Exp. Biol. Med., 101, 467–468Google Scholar
  51. 51.
    Martins, T. (1949). Disgorging of food to the puppies by the lactating dog. Physiol Zool., 22, 169–172PubMedGoogle Scholar
  52. 52.
    McCuistion, W. R. (1964). Rabbit mucoid enteritis (neonatal hypoamylasaemia). Vet. Med., 59, 315–318Google Scholar
  53. 53.
    McCuistion, W. R. (1966). Coprophagy, a quest for digestive enzymes. Vet. Med. Small Anim. Clin., 61, 445–447PubMedGoogle Scholar
  54. 54.
    Mickelsen, O. (1956). Intestinal synthesis of vitamins in the non-ruminant. Vitam. Horm., 14, 1–95PubMedCrossRefGoogle Scholar
  55. 55.
    Minchin, K. (1973). Notes on the weaning of a young koala (. Phascolarctos einereus). Ree. South Austr. Museum, 6, 1–3Google Scholar
  56. 56.
    Moir, R. J. (1968). Ruminant digestion and evolution. Handbook Physiol Section 6 Alimentary Canal, 5, 2673–2694Google Scholar
  57. 57.
    Pickard, D. W. and Stevens, C. E. (1972). Digesta flow through the rabbit large intestine. Am. J. Physiol, 222, 1161–1166PubMedGoogle Scholar
  58. 58.
    Proto, V., Gargano, D. and Gianani, L. (1968). La coprofagia del coniglio sottoposto a differenti diete. Prod. Anim., 1, 157–171Google Scholar
  59. 59.
    Richard, P.-B. (1959). La caecotrophie chez Ie castor du Rhone (Castor-fiber). C. R. Acad. Sei. Paris, 248, 1424–1426Google Scholar
  60. 60.
    Ruckebusch, Y. and Fioramonti, J. (1976). Fusus-coli of rabbit as a pacemaker area. Experientia, 32, 1023–1024PubMedCrossRefGoogle Scholar
  61. 61.
    Ruckebusch, Y. and Hörnicke, H. (1977). Motility of the rabbit’s colon and cecotrophy. Physiol Behav., 18, 871–878PubMedCrossRefGoogle Scholar
  62. 62.
    Salse, A., Crampes, F. and Raynaud, P. (1977). Measurement of N urea dietary value by intracaecal perfusion in rabbit. Ann. Biol. Anim. Biochim. Biophys., 17, 559–566CrossRefGoogle Scholar
  63. 63.
    Savage, D. C. (1972). Association and physiological interaction of indigenous microorganisms and gastrointestinal epithelia. Am. J. Clin. Nutr., 25, 1372–1379PubMedGoogle Scholar
  64. 64.
    Schurg, W. A., Frei, D. L., Cheeke, P. R. and Holtan, D. W. (1977). Utilization of whole corn plant pellets by horses and rabbits. J. Anim. Sci., 45, 1317–1321Google Scholar
  65. 65.
    Simnet, J. and Spray, G. (1961). The influence of diet on the vitamin B12 activity in the cecum, urine and faeces of rabbits. Br. J. Nutr., 15, 555–556CrossRefGoogle Scholar
  66. 66.
    Sklan, D., Shachaf, B., Baron, J. and Hurwitz, S. (1978). Retrograde movement of digesta in the duodenum of the chick. Extent, frequency and nutritional implication. J. Nutr., 108, 1485–1490PubMedGoogle Scholar
  67. 67.
    Smith, H. W. (1965). Observations on the flora of the alimentary tract of animals and factors affecting its composition. J. Pathol Bacteriol, 89, 95–122PubMedCrossRefGoogle Scholar
  68. 68.
    Sperber, I. (1968). Physiological mechanisms in herbivores for retention and utilisation of nitrogenous compounds. Isotope Studies on the Nitrogen Chain, pp. 209–219. (Wien: IAEA)Google Scholar
  69. 69.
    Steffens, W. and Menke, K. H. (1964). Kobalt- und Vitamin B12-Stoffwechsel. III: Untersuchung über die Koprophagie bei Küken nach Verabreichung von 60CoCl2. Atompraxis, 10, 3:1–6Google Scholar
  70. 70.
    Stilling, B. R. and Hackler, L. R. (1966). Effect of coprophagy on protein utilization in the rat. J. Nutr., 90, 19–24Google Scholar
  71. 71.
    Turcek, F. J. (1963). Beitrag zur Ökologie des Ziesels (Citellus citellus L.) II. Biologia, Bratislava, 18, 419–432Google Scholar
  72. 72.
    Viallard, V. and Raynaud, P. (1966). Recherches sur !’utilisation de l’urée par Ies micro-organismes de l’estomac de lapin. C. R. Soc. Biol., 160, 2479–2483Google Scholar
  73. 73.
    Wilks, B. J. (1962). Reingestion in geomyid rodents. J. Mammal., 43, 167CrossRefGoogle Scholar
  74. 74.
    Wilson, E. O. (1971). The Insect Societies. (Cambridge, Massachusetts: Belcnap Press of Harvard Univ. Press)Google Scholar
  75. 75.
    Yoshida, T., Pleasants, J. R., Reddy, B. S. and Wöstmann, B. S. (1971). Amino acid composition of cecal contents and feces in germ-free and conventional rabbits. J. Nutr., 101, 1423–1430PubMedGoogle Scholar

Copyright information

© MTP Press Limited 1980

Authors and Affiliations

  • H. Hörnicke
  • G. Björnhag

There are no affiliations available

Personalised recommendations