Skip to main content

Dietary composition and the absorption of trace elements by ruminants

  • Chapter
Book cover Digestive Physiology and Metabolism in Ruminants

Abstract

Although considerable advances have been made in recent years in our understanding of the metabolism of trace metals in animals, imbalances in trace-metal intake are still the cause of major economic losses in animal production. Problems still exist, for example, in the diagnosis of subclinical deficiency and in precise definition of an animal’s dietary requirement for each trace metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anke, M., Grun, M., Partschefeld, M. and Groppel, B. (1978). Molybdenum deficiency in ruminants. In M. Kirchgessner (ed.) Trace Element Metabolism in Man and Animals - 3, pp. 230–233. Arbeitskreis für Tierernahrungsforschung Weihenstephan

    Google Scholar 

  2. Bell, M. C., Diggs, B. G., Lowrey, R. S. and Wright, P. L. (1964). Comparison of 99Mo metabolism in swine and cattle as affected by stable molybdenum. J. Nutr., 84, 367–371

    PubMed  CAS  Google Scholar 

  3. Bertinchamps, A. J., Miller, S. T. and Cotzias, G. C. (1966). Interdependence of routes excreting manganese. Am. J. Physiol., 211, 217–224

    PubMed  CAS  Google Scholar 

  4. Bertoni, G., Watson, M. J., Savage, G. P. and Armstrong, D. G. (1976). The movements of minerals in the digestive tract of dry and lactating Jersey cows. 2) Net movements of Cu, Fe, Mn and Zn. Zoot. Nutr. Anim., 2, 185–191

    CAS  Google Scholar 

  5. Bird, P. R. (1970). Sulphur metabolism and excretion studies in ruminants III. The effect of sulphur intake on the availability of copper in sheep. Proc. Aust. Soc. Anim. Prod., 8, 212–218

    CAS  Google Scholar 

  6. Bremner, I. (1970). Zinc, copper and manganese in the alimentary tract of sheep. Br. J. Nutr., 24, 769–783

    Article  PubMed  CAS  Google Scholar 

  7. Bremner, I. and Dalgarno, A. C. (1973). Iron metabolism in the veal calf. The availability of different iron compounds. Br. J. Nutr., 29, 229–243

    Article  PubMed  CAS  Google Scholar 

  8. Bremner, I. and Knight, A. H. (1970). The complexes of zinc, copper and manganese present in ryegrass. Br. J. Nutr., 24, 279–289

    Article  PubMed  CAS  Google Scholar 

  9. Bremner, I. and Young, B. W. (1978). Effects of dietary molybdenum and sulphur on the distribution of copper in plasma and kidneys of sheep. Br. J. Nutr., 39, 325–336

    Article  PubMed  CAS  Google Scholar 

  10. Bremner, I., Young, B. W. and Mills, C. F. (1976). Protective effect of zinc against copper toxicosis in sheep. Br. J. Nutr., 36, 551–561

    Article  PubMed  CAS  Google Scholar 

  11. Campbell, J. K., Davies, N. T. and Mills, C. F. (1978). Interactions of cadmium, copper and zinc in animals chronically exposed to low levels of dietary cadmium. In M. Kirchgessner (ed.) Trace Element Metabolism in Man and Animals - 3, pp. 553–556. Arbeitskreis für Tierernahrungsforschung Weihenstephan

    Google Scholar 

  12. Carter J. C., Miller, W. J., Neathery, M. W., Gentry, R. P., Stake, P. E. and Blackmon, D. M. (1974). Manganese metabolism with oral and intravenous 54Mn in young calves as influenced by suoplemental manganese. J. Anim. Sci., 38, 1284–1290

    PubMed  CAS  Google Scholar 

  13. Chapman, H. L. and Bell, M. C. (1963). Relative absorption and excretion by beef cattle of copper from various sources. J. Anim. Sci., 22, 82–88

    Google Scholar 

  14. Compere, R. and Francois, E. (1966). Etude comparée de la sensibilité aux molyb- dénoses chez Ie rat et Ie mouton. Bull. Inst. Agron. Stns. Reeh. Gembloux, 1, 534–560

    CAS  Google Scholar 

  15. Cousins, R. J. (1979). Regulation of zinc absorption: role of intracellular ligands. Am. J. Clin. Nutr., 32, 339–345

    PubMed  CAS  Google Scholar 

  16. Davies, N. T. and Campbell, J. K. (1977). The effect of cadmium on intestinal copper absorption and binding in the rat. Life Sci., 20, 958–960

    Article  Google Scholar 

  17. Davies, N. T., Goodall, E. D., Kay, R. N. B. and Paschaleris, G. (Unpublished results)

    Google Scholar 

  18. Davies, N. T. and Williams, R. B. (1976). The effects of pregnancy on uptake and distribution of copper in the rat. Proe. Nutr. Soc., 35, 4A

    CAS  Google Scholar 

  19. Davies, N. T. and Williams, R. B. (1977). The effect of pregnancy and lactation on the absorption of zinc and lysine by rat duodenum in situ. Br. J. Nutr., 38, 417–423

    CAS  Google Scholar 

  20. Dick, A. T., Dewey, D. W. and Gawthorne, J. M. (1975). Thiomolybdates and the copper-molybdenum-sulphur interaction in ruminant nutrition. J. Agric. Sci. Cambridge 85, 567–568

    Article  Google Scholar 

  21. Doyle, J. J., Pfander, W. H., Grebing, S. E. and Pierce, J. O. (1974). Effect of dietary cadmium on growth, cadmium tissue levels in growing lambs. J. Nutr., 104, 160–166

    PubMed  CAS  Google Scholar 

  22. Evans, G. W. and Johnson, P. E. (1978). Copper- and zinc-binding ligands in the intestinal mucosa. In M. Kirchgessner (ed.) Trace Element Metabolism in Man and Animals - 3, pp. 98–105. Arbeitskreis für Tierernahrungsforschung Weihenstephan

    Google Scholar 

  23. Feaster, J. P., Hansard, S. L., McCall, J. T., Skipper, F. H. and Davis, G. K. (1954). Absorption and tissue distribution of radio zinc in steers fed high zinc rations. J. Anim. Sci., 13, 781–788

    CAS  Google Scholar 

  24. Gawthorne, J. M. and Nader, C. J. (1976). The effect of molybdenum on the conversion of sulphate to sulphide and microbial-protein-sulphur in the rumen of sheep. Br. J. Nutr., 35, 11–23

    Article  PubMed  CAS  Google Scholar 

  25. Grace, N. D. (1975). Studies on the flow of zinc, cobalt, copper and manganese along the digestive tract of sheep given perennial ryegrass, or white or red clover. Br. J. Nutr., 34, 73–82

    PubMed  CAS  Google Scholar 

  26. Grace, N. D. and Suttle, N. F. (1979). Some effects of sulphur intake on molybdenum metabolism in sheep. Br. J. Nutr., 41, 125–136

    Article  PubMed  CAS  Google Scholar 

  27. Haaranen, S. (1963). Some observations on the zinc requirement of cattle for the prevention of itch and hair licking at different calcium levels in the feed. Nord. Vet.-Med., 15, 536–542

    Google Scholar 

  28. Hall, A. C., Young, B. W. and Bremner, I. (1979). Intestinal metallothionein and the mutual antagonism between copper and zinc in rats. J. Inorg. Bioehem., 11, 57–66

    Article  CAS  Google Scholar 

  29. Hartmans, J. (1969). Copper deficiency in dairy cattle under field conditions. Agrie. Digest, 18, 42–48

    Google Scholar 

  30. Howes, A. D. and Dyer, I. A. (1971). Diet and supplemental mineral effects on manganese metabolism in newborn calves. J. Anim. Sci., 32, 141–145

    PubMed  CAS  Google Scholar 

  31. Ivan, M. and Grieve, C. M. (1976). Effects of zinc, copper and manganese supplementation of high-concentrate ration on gastrointestinal absorption of copper and manganese in Holstein calves. J. Dairy Sci., 59, 1764–1768

    Article  PubMed  CAS  Google Scholar 

  32. Kirchgessner, M., Schwarz, F. J. and Grassman, E. (1973). Intestinal absorption of copper and zinc after dietary depletion. Bioinorg. Chem., 2, 255–262

    Article  CAS  Google Scholar 

  33. Kirchgessner, M., Schwarz, W. A. and Roth, H. P. (1978). Homeostasis of Zn metabolism in experimentally induced Zn deficiency of dairy cows. In M. Kirchgessner (ed.) Trace Element Metabolism in Man and Animals- 3, pp. 116–127. Arbeitskreis für Tierernahrungsforschung Weihenstephan

    Google Scholar 

  34. Kostial, K., Kello, D., Jugo, S., Rabar, I. and Maljkovic, T. (1978). Influence of age on metal metabolism and toxicity. Environ. Health Perspect., 25, 81–86

    Article  PubMed  CAS  Google Scholar 

  35. Lamand, M. (1978). Relationship between different criteria of nutritional quality and availability of trace elements of forages in sheep. In M. Kirchgessner, (ed.) Trace Element Metabolism in Man and Animals - 3, pp. 464–467. Arbeitskreis für Tierernahrungsforschung Weihenstephan

    Google Scholar 

  36. Marcilese, N. A., Ammerman, C. B., Valsecchi, R. M., Dunavant, B. G. and Davis, G. K. (1970). Effect of dietary molybdenum and sulfate upon urinary excretion of copper in sheep. J. Nutr., 100, 1399–1406

    PubMed  CAS  Google Scholar 

  37. Mason, J., Lamand, M., Tressol, J. C. and Lab, C. (1978). The influence of dietary sulphur, molybdate and copper on the absorption, excretion and plasma fraction levels of 99Mo in sheep. Ann. Rech. Vet., 9, 577–586

    PubMed  CAS  Google Scholar 

  38. Matrone, G., Hartman, R. H. and Clawson, A. J. (1959). Studies of a manganese-iron antagonism in the nutrition of rabbits and baby pigs. J. Nutr., 67, 309–317

    PubMed  CAS  Google Scholar 

  39. Miller, J. K. and Cragle, R. G. (1965). Gastro-intestinal sites of absorption and endogenous secretion of zinc in dairy cattle. J. Dairy Sci., 48, 370–373

    Article  PubMed  CAS  Google Scholar 

  40. Miller, J. K., Moss, B. R., Bell, M. C. and Sneed, N. N. (1972). Comparison of 99Mo metabolism in young cattle and swine. J. Anim. Sci., 34, 846–850

    PubMed  CAS  Google Scholar 

  41. Miller, W. J. (1967). Effect of protein source and feeding method on zinc absorption by calves. J. Nutr., 93, 386–392

    PubMed  CAS  Google Scholar 

  42. Miller, W. J., Blackmon, D. M., Gentry, R. P. and Pate, F. M. (1970). Effects of high but non-toxic levels of zinc in practical diets of Zn65 and zinc metabolism in Holstein calves. J. Nutr., 100, 893–902

    PubMed  CAS  Google Scholar 

  43. Miller, W. J., Martin, Y. G., Gentry, R. P. and Blackmon, D. M. (1968). Zn65 and stable zinc absorption/excretion and tissue concentration as affected by type of diet and level of zinc in normal calves. J. Nutr., 94, 391–401

    PubMed  CAS  Google Scholar 

  44. Mills, C. F. (1956). Studies of the copper compounds in aqueous extracts of herbage. Biochem. J., 63, 187–190

    PubMed  CAS  Google Scholar 

  45. Mills, C. F. (1956). The dietary availability of copper in the form of naturally occurring organic complexes. Biochem. J., 63, 190–193

    PubMed  CAS  Google Scholar 

  46. Mills, C. F. (1974). Trace element interactions. Effects of dietary composition on the development of imbalance and toxicity. In W. G. Hoekstra, J. W. Suttie, H. E. Ganther and W. Mertz (eds.) Trace Element Metabolism in Animals - 2. pp 74–90 (Baltimore: Univ. Park Press)

    Google Scholar 

  47. Mills, C. F., Bremner, I., El-Gallad, T. T., Dalgarno, A. C. and Young, B. W. (1978). Mechanisms of the molybdenum/sulphur antagonism of copper utilisation by ruminants. In M. Kirchgessner (ed.) Trace Element Metabolism in Man and Animals - 3, pp. 150–158. Arbeitskreis für Tierernahrungsforschung Weihenstephan

    Google Scholar 

  48. Mills, C. F. and Dalgarno, A. C. (1967). The influence of dietary calcium concentrations on epidermal lesions of zinc deficiency in lambs. Proc. Nutr. Soc., 26, xix

    Google Scholar 

  49. Mills, C. F. and Dalgarno, A. C. (1972). Copper and zinc status of ewes and lambs receiving increased dietary concentrations of cadmium. Nature (.London), 239, 171–173

    Article  CAS  Google Scholar 

  50. Mills, C. F., Dalgarno, A. C., Bremner, I. and El-Gallad, T. T. (1977). Influence of the dietary content of molybdenum and sulphur on the hepatic retention of copper in young cattle. Proc. Nutr. Soc., 36, 105A

    PubMed  CAS  Google Scholar 

  51. Neathery, M. W., Miller, W. J., Blackmon, D. M. and Gentry, R. P. (1973). Zlnc-65 metabolism, secretion into milk, and biological half-life in lactating cows. J. Dairy Sci., 56, 1526–1530

    Article  PubMed  CAS  Google Scholar 

  52. Neethling, L. P., Brown, J. M. M. and DeWet, P. J. (1968). The low toxicity absorption turnover and excretion of copper in the merino sheep. J. S. Afr. Vet. Med. Assoc., 39, 13–19

    Google Scholar 

  53. Owen, C. A. (1971). Metabolism of copper-67 by the copper-deficient rat. Am. J. Physiol., 221, 1722–1727

    PubMed  CAS  Google Scholar 

  54. Pate, F. M., Miller, W. J., Blackmon, D. M. and Gentry, R. P. (1970). Zn65 absorption rate following single duodenal dosing in calves fed Zn-deficient or control diets. J. Nutr., 100, 1259–1266

    PubMed  CAS  Google Scholar 

  55. Powell, G. W., Miller, W. J. and Blackmon, D. M. (1967). Effects of dietary EDTA and. cadmium on absorption, excretion and retention of orally administered Zn65 in various tissues of zinc-deficient and normal goats and calves. J. Nutr., 93, 203–212

    PubMed  CAS  Google Scholar 

  56. Sansom, B. F., Gibbons, R. A., Dixon, S. N., Russell, A. M. and Symonds, H. W. (1976). Absorption of dietary manganese by dairy cows and the role of plasma proteins and the liver in its homeostasis. Nucl. Tech. Anim. Prod. Health IAEA, Vienna, pp. 179–189

    Google Scholar 

  57. Sansom, B. F., Symonds5 H. W. and Vagg, M. J. (1978). The absorption of dietary manganese by dairy cows. Res. Vet. Sci., 24, 366–369

    PubMed  CAS  Google Scholar 

  58. Scaife, J. F. (1956). Molybdenum excretion and retention in the sheep. N.Z. J. Sci. Teehnol., 38A, 293–298

    CAS  Google Scholar 

  59. Smith, B. S. and Wright, H. (1975). Effect of dietary molybdenum on copper metabolism. Evidence for the involvement of molybdenum in abnormal binding of copper to plasma proteins. Clin. Chim. Acta, 62, 55–63

    Article  PubMed  CAS  Google Scholar 

  60. Simpson, A. and Mills, C. F. (Personal communication)

    Google Scholar 

  61. Spais, A. G., Agiannidis, A. C., Yantzis, N. G., Papasteriadis, A. A. and Lazaridis, T. C. (1974). Action of cyanides and thiocyanates on copper metabolism in sheep. In W. G. Hoekstra, J. W. Suttie, H. E. Ganther and W. Mertz (eds.) Trace Element Metabolism in Animals -2, pp. 615–617. (Baltimore: Univ. Park Press)

    Google Scholar 

  62. Spais, A. G., Lazaridis, T. K. and Agiannidis, A. K. (1968). Studies on sulphur metabolism in sheep in association with copper deficiency. Res. Vet. Sci., 9, 337–344

    PubMed  CAS  Google Scholar 

  63. Starcher, B. C. (1969). Studies on the mechanism of copper absorption in the chick. J. Nutr., 97, 321–326

    PubMed  CAS  Google Scholar 

  64. Stevenson, M. H. and Unsworth, E. F. (1978). Studies on the absorption of calcium, phosphorus, magnesium, copper and zinc by sheep fed on roughage-cereal diets. Br. J. Nutr., 40, 491–496

    Article  PubMed  CAS  Google Scholar 

  65. Suttie, N. F. (1974). Effects of organic and inorganic sulphur on the availability of dietary copper to sheep. Br. J. Nutr., 32, 559–568

    Article  Google Scholar 

  66. Suttie, N. F. (1975). Change in availability of dietary copper to young lambs associated with age and weaning. J. Agric. Sci., 84, 255–261

    Article  Google Scholar 

  67. Suttie, N. F. (1975). The role of organic sulphur in the copper-molybdenum-S interrelationship in ruminant nutrition. Br. J. Nutr., 34, 411–420

    Google Scholar 

  68. Suttie, N. F., Alloways, B. J. and Thornton, I. (1975). An effect of soil ingestion on the utilization of dietary copper by sheep. J. Agric. Sci., 84, 249–254

    Article  Google Scholar 

  69. Suttie, N. F. and Field, A. C. (1968). Effect of intake of copper, molybdenum and sulphate on copper metabolism in sheep. I. Clinical condition and distribution of Cu in blood of the pregnant ewe. J. Comp. Pathol., 78, 351–362

    Article  Google Scholar 

  70. Suttie, N. F. and McLauchlan, M. (1976). Predicting the effects of dietary molybdenum and sulphur on the availability of copper to ruminants. Proc. Nutr. Soc., 35, 22A-23A

    Google Scholar 

  71. Thomsom, A. B. R. and Valberg, L. S. (1972). Intestinal uptake of iron, cobalt and manganese in the iron-deficient rat. Am. J. Physiol., 233, 1327–1329

    Google Scholar 

  72. Underwood, E. J. (1977). In Trace Elements in Human and Animal Nutrition. (London: Academic Press)

    Google Scholar 

  73. Vagg, M. J. (1971). Effect of raised dietary calcium on the gastrointestinal absorption and rate of excretion of manganese by dairy cows. InMineral Studies with Isotopes in Domestic Animals, pp. 121–123. (Vienna: IAEA)

    Google Scholar 

  74. Van Campen, D. R. (1971). Absorption of copper from the gastrointestinal tract. In S. C. Skoryna and D. Waldron-Edward, (eds.) Intestinal Absorption of Metal Ions and Radionuclides, pp. 211–227. (Oxford: Pergamon)

    Google Scholar 

  75. Wynne, K. N. and McClymont, G. L. (1956). Copper-molybdenum-sulphate interaction in induction of ovine hypocupraemia and hypocuprosis. Aust. J. Agric. Res., 7, 45–56

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 MTP Press Limited

About this chapter

Cite this chapter

Bremner, I., Davies, N.T. (1980). Dietary composition and the absorption of trace elements by ruminants. In: Ruckebusch, Y., Thivend, P. (eds) Digestive Physiology and Metabolism in Ruminants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-8067-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-8067-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-8069-6

  • Online ISBN: 978-94-011-8067-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics