Skip to main content

Angular Correlation Tests of Time Reversal Invariance

  • Conference paper
Angular Correlations in Nuclear Disintegration
  • 127 Accesses

Abstract

The theoretical basis for angular correlation tests of time reversal invariance was first presented by Henley and Jacobsohn1). Subsequent work by Lobov2) and Szymanski3) has analyzed in some detail the main features of the method. There have been several review articles 4,5) that have covered aspects of these tests and have extended the original proposals, and in addition the general experimental situation has been recently presented6,7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Henley and B.A. Jacobsohn, Phys. Rev. 113 (1959) 225; B.A. Jacobsohn and E.M. Henley, Phys. Rev. 113 (1959) 234.

    Article  MATH  Google Scholar 

  2. G.A. Lobov, JETP Letters 1 (1965) 157.

    Google Scholar 

  3. Z. Szymanski, Nuclear Physics Al 13 (1968) 385.

    Article  Google Scholar 

  4. F. Boehm, in Hyperfine Structure and Nuclear Radiations (Ed. Matthias and Shirley, North-Holland Publ. Co., Amsterdam, 1968), p. 279.

    Google Scholar 

  5. E.M. Henley, in Annual Review of Nuclear Science 19 (1968) 367.

    Article  Google Scholar 

  6. P.A. Krupchitsky and G.A. Lobov, in Atomic Energy Review, Vol. 7, no. 3 (1969) 91.

    Google Scholar 

  7. D. Hamilton, in High Energy Physics and Nuclear Structure (Ed. Devons, Plenum Press, New York, 1970) p. 696.

    Google Scholar 

  8. J.H. Christenson, J.W. Cronin, V.L. Fitch and R. Turlay, Phys. Rev. Letters 13 (1964) 138.

    Article  Google Scholar 

  9. T.D. Lee and L. Wolfenstein, Phys. Rev. 138B (1965) 1490.

    Article  Google Scholar 

  10. J. Bernstein, G. Feinberg and T.D. Lee, Phys. Rev. 139B (1965) 1650.

    Article  Google Scholar 

  11. N. Cabibbo, Phys. Letters 12 (1964) 137.

    Article  MathSciNet  Google Scholar 

  12. F. Boehm, paper submitted to this conference.

    Google Scholar 

  13. J.K. Baird, P.D. Miller, W.B. Dress and N.F. Ramsey, Phys. Rev. 179 (1969) 1285.

    Article  Google Scholar 

  14. G. Barton and E.D. White, Phys. Rev. 184 (1969) 1660; DJ. Broadhurst, Nuclear Phys. B20 (1970) 603.

    Article  Google Scholar 

  15. B.L. Schrock, J.-F. Detoeuf, R.P. Haddock, J.A. Heiland, M.J. Longo, K.K. Young, S.S. Wilson, D. Cheng, J. Sperinde and V. Perez-Mendez, in High Energy Physics and Nuclear Structure (Ed. Devons, Plenum Press, New — York, 1970), p. 727.

    Google Scholar 

  16. S. Rock, M. Borghini, O. Chamberlain, R.Z. Fuzsey, C.C. Morehouse, T. Powell, G. Shapiro, H. Weisberg, R.L.A. Cottrell, J. Litt, L.W. Mo and R.E. Taylor, Phys. Rev. Letters 24 (1970) 748.

    Article  Google Scholar 

  17. L. Dobrzynski, Nguyen Huu Xuong, L. Montanet, M. Tomas, J. Duboc and R.A. Doanld, Phys. Letters 22 (1966) 105.

    Article  Google Scholar 

  18. D. Jackson, S. Treiman and H. Wylde, Phys. Rev. 106 (1957) 517.

    Article  Google Scholar 

  19. M.J. Burgy, V.E. Krohn, T.B. Novey, G.R. Ringo and V.L. Telegdi, Phys. Rev. Letters 1 (1958) 324.

    Article  Google Scholar 

  20. B.G. Erozalimsky, L.N. Bondarenko, Yu.A. Mostovoy, B.A. Obinyakov, V.P. Zacharova and V.A. Titov, Phys. Letters 27B (1968) 557.

    Google Scholar 

  21. C.J. Christensen, A. Nielsen, A. Bahnsen, W.K. Brown and B.M. Rustad, Phys. Letters 26B (1967) 11.

    Google Scholar 

  22. G.L. Wick, Ph.D. Thesis UGRL-17708 (1967); F.P. Calaprice, E.D. Commins, H.M. Gibbs, G.L. Wick and D.A. Dobson, Phys. Rev. 184 (1969) 1117.

    Google Scholar 

  23. D. Jackson, S. Treiman and H. Wylde, Nuclear Phys. 4 (1957) 213; C.G. Callan and S.B. Treiman, Phys. Rev. 162 (1967) 1494.

    Article  Google Scholar 

  24. C. Marchioro, A. Prosperetti and A. Pugliese, Nuovo Cimento Letters 1 (1969) 473.

    Article  Google Scholar 

  25. C.W. Kim and H. Primakoff, Phys. Rev. 108 (1969) 1502.

    Article  Google Scholar 

  26. S.P. Lloyd, Phys. Rev. 81 (1951) 161.

    Article  Google Scholar 

  27. L.C. Biedenharn, in Nuclear Spectroscopy (Ed. F. Ajzenberg — Selove, Academic Press, New York and London, 1960), part B, p. 732.

    Google Scholar 

  28. H.J. Rose and D.M. Brink, Rev. Mod. Phys. 39 (1967) 306.

    Article  Google Scholar 

  29. AJ. Ferguson, Angular Correlation Methods in Gamma — Ray Spectroscopy (North-Holland Publ. Co., Amsterdam, 1965).

    Google Scholar 

  30. R.J. Blin-Stoyle and M.A. Grace, Encyclopedia of Physics 42 (1957) 555.

    Google Scholar 

  31. T.D. Lee and C.N. Yang, Report BNL-443 (1957).

    Google Scholar 

  32. E. Fuschini, V. Gadjokov, C. Maroni and P. Veronesi, Nuovo Cimento 33 (1964) 1309.

    Article  Google Scholar 

  33. R.B. Perkins and E.T. Ritter, Phys. Rev. 174 (1968) 706.

    Article  Google Scholar 

  34. M. Garrell, H. Frauenfelder, D. Ganek and D.C. Sutton, Phys. Rev. 187 (1969) 1410.

    Article  Google Scholar 

  35. Y.G. Abov, P.A. Krupchitsky, M.I. Bulgakov, O.N. Yermakov and I.L. Karpikhin, Phys. Letters 27B (1968) 16.

    Google Scholar 

  36. E. Warming, Phys. Letters 29B (1969) 564.

    MathSciNet  Google Scholar 

  37. J. Kajfosz, J. Kopecky and J. Honzatko, Phys. Letters 20 (1966) 284; Nucl. Phys. A120 (1968) 255.

    Article  Google Scholar 

  38. J. Eichler, Nucl. Phys. A120 (1968) 535.

    Google Scholar 

  39. O.C. Kistner, Phys. Rev. Letters 19 (1967) 872. O.C. Kistner, in Hyperfine Structure and Nuclear Radiation (Ed. Matthias and Shirley, North-Holland Publ. Co., Amsterdam, 1968), p. 295.

    Article  Google Scholar 

  40. M. Blume and O.C. Kistner, Phys. Rev. 171 (1968) 417.

    Article  Google Scholar 

  41. E. Zech, F. Wagner, H.J. Körner and P. Kienle, in Hyperfine Structure and Nuclear Radiation (Ed. Matthias and Shirley, North-Holland Publ. Co., Amsterdam, 1968), p. 314.

    Google Scholar 

  42. M. Atac, B. Chrisman, P. Debrunner and H. Frauenfelder, Phys. Rev. Letters 20 (1968) 691.

    Article  Google Scholar 

  43. J.P. Hannon and G.T. Trammell, Phys. Rev. Letters 21 (1968) 726.

    Article  Google Scholar 

  44. E.M. Henley and B.A. Jacobsohn, Phys. Rev. Letters 16 (1966) 706.

    Article  Google Scholar 

  45. E. Breitenberger, Phil. Mag. 45 (1954) 497.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Rottendam University Press, Wolters-Noordhoff Publishing, Groningen, The Netherlands

About this paper

Cite this paper

Hamilton, D. (1971). Angular Correlation Tests of Time Reversal Invariance. In: van Krugten, H., van Nooijen, B. (eds) Angular Correlations in Nuclear Disintegration. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7731-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7731-3_46

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7733-7

  • Online ISBN: 978-94-011-7731-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics