Skip to main content

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 11))

  • 225 Accesses

Abstract

The chemical production of hydroxyl radical, either by metal-mediated redox reactions or as a result of radiolysis products, can induce strand breaks in DNA. An example of a chemotherapeutic agent whose chemical production of activated oxygen is believed to be the critical step in its action is bleomycin, a naturally occurring antibiotic. The binding of metals to this and other antibiotics has been summarized in detail [1–3] and the material presented here is based on these reviews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Sugiura, T. Takita, and H. Umezawa: Metal Ions in Biol Syst. 19, 81 (1986).

    Google Scholar 

  2. R. M. Burger, J. Peisach, and S. B. Horwitz: Life Sciences 28, 715 (1981).

    CAS  Google Scholar 

  3. J. C. Dabrowiak: Metal Ions in Biol. Syst. 11, 305 (1980).

    CAS  Google Scholar 

  4. H. Umezawa, K. Maeda, T. Takeuchi, and Y. Okami: J. Antibiot. (Tokyo) 19A, 200 (1966).

    Google Scholar 

  5. Bleomycin: Current Status and New Developments (Eds. S. K. Carter, S. T. Crooke, and H. Umezawa) Academic Press, London (1978).

    Google Scholar 

  6. Bleomycin: Chemical, Biochemical and Biological Aspects (Ed. S. M. Hecht) Springer-Verlag, Berlin (1979).

    Google Scholar 

  7. S. T. Crooke: Cancer and Chemotherapy v. III pp. 97–109 and pp. 343–352. Academic Press, London (1981).

    Google Scholar 

  8. H. Umezawa, Y. Suhara, T. Takita, and K. Maeda: J. Antibiot. 19A, 210 (1966).

    Google Scholar 

  9. S. T. Crooke and W. T. Bradner: J. Med. (Basel) 1, 333 (1977).

    Google Scholar 

  10. T. Takita, Y. Muraoka, T. Nakatani, A. Fujii, Y. Umezawa, H. Naganawa, an H. Umezawa: J. Antibiot. 31, 801 (1978).

    CAS  Google Scholar 

  11. H. Umezawa: Bleomycin. Origin, Chemistry, and Artificial Bleomycins (Antibiotics III. Mechanism of Action of Antimicrobial and Antitumour Agents, Eds. J. W. Corcoran and F. E. Hahn) pp. 21–33. Springer (1975).

    Google Scholar 

  12. T. Takita, Y. Muraoka, T. Nakatani, A. Fujii, Y. Umezawa, H. Naganawa, and H. Umezawa: J. Antibiot. 31, 801 (1978).

    CAS  Google Scholar 

  13. S. Saito, Y. Umezawa, T. Yoshioka, T. Takita, H. Umezawa, and Y. Muraoka: J. Antibiot. 36, 92 (1983).

    CAS  Google Scholar 

  14. Y. Iitaka, H. Nakamura, T. Nakatani, Y. Murata, A. Fujii, T. Takita, and H. Umezawa: J. Antibiot. 31, 1070 (1978).

    CAS  Google Scholar 

  15. Y. Muraoka, H. Kobayashi, A. Fujii, M. Kunishima, T. Fujii, Y. Nakayama, T. Takita, and H. Umezawa: J. Antibiot. 29, 853 (1976).

    Google Scholar 

  16. J. C. Dabrowiak, F. T. Greenway, W. E. Longo, M. van Husen, and S. T. Crooke: Biochim. Biophys. Acta 517, 517 (1978).

    CAS  Google Scholar 

  17. T. Takita, Y. Muraoka, T. Nakatani, A. Fujii, Y. Iitaka, and H. Umezawa: J. Antibiot. 31, 1073 (1978).

    CAS  Google Scholar 

  18. Y. Sugiura: J. Antibiot. 31, 1206 (1978).

    CAS  Google Scholar 

  19. Y. Sugiura: J. Am. Chem. Soc. 102, 5216 (1980).

    CAS  Google Scholar 

  20. A. Kono, Y. Matsushima, M. Kojima, and T. Maeda: Chem. Pharm. Bull. Jap. 25, 1725 (1977).

    CAS  Google Scholar 

  21. J. P. Albertini and A. Garnier-Suillerot: Biochemistry 21, 6777 (1982).

    CAS  Google Scholar 

  22. A. Garnier-Suillerot, J. P. Albertini, and L. Tosi: Biochem. Biophys. Res. Comm. 102, 499 (1981).

    CAS  Google Scholar 

  23. R. M. Burger, J. H. Freedman, S. B. Horwitz, and J. Peisach: Inorg. Chem. 23, 2217 (1984).

    Google Scholar 

  24. G. M. Ehrenfeld, N. Murugesan, and S. M. Hecht: Inorg. Chem. 23, 1498 (1984).

    Google Scholar 

  25. J. C. Dabrowiak, F. T. Greenway, and R. Grulich: Biochemistry 17, 4090 (1978).

    CAS  Google Scholar 

  26. N. J. Oppenheimer, L. O. Rodriguez, and S. M. Hecht: Biochemistry 18, 3439 (1979).

    CAS  Google Scholar 

  27. Y. Sugiura, K. Ishizu, and K. Myoshi: J. Antibiot. 32, 453 (1979).

    CAS  Google Scholar 

  28. P. H. Stern, S. E. Halpern, P. L. Hagan, S. B. Howell, J. E. Dabbs, and R. M. Gordon: J. Natl. Cancer Inst. 66, 807 (1981).

    CAS  Google Scholar 

  29. T. Mori, K. Hamamoto, and K. Torizuka: J. Nucl. Med. 14, 431 (1973).

    Google Scholar 

  30. L. Banci, A. Dei, and D. Gatteschi: Inorg. Chim. Acta 67, L53 (1982).

    CAS  Google Scholar 

  31. E. A. Rao, L. A. Saryan, W. E. Antholine, and D. H. Petering: J. Med. Chem. 23, 1310 (1980).

    CAS  Google Scholar 

  32. J. P. Albertini and A. Garnier-Suillerot: J. Inorg. Biochem. 25, 15 (1985).

    CAS  Google Scholar 

  33. D. Solamain, E. A. Rao, W. E. Antholine, and D. H. Petering: J. Inorg. Biochem. 12, 201 (1980).

    Google Scholar 

  34. N. J. Oppenheimer, C. Chang, L. O. Rodriguez, and S. M. Hecht: J. Biol. Chem. 256, 1514 (1981).

    CAS  Google Scholar 

  35. W. E. Antholine, D. Solaiman, L. A. Saryan, and D. H. Petering: J. Inorg. Biochem. 17, 75 (1982).

    CAS  Google Scholar 

  36. J. H. Freedman, S. B. Horwitz, and J. Peisach: Biochemistry 21, 2203 (1982).

    CAS  Google Scholar 

  37. L. F. Povirk, M. Hogan, N. Dattagupta, and M. Buechner: Biochemistry 20, 665 (1981).

    CAS  Google Scholar 

  38. G. M. Ehrenfeld, L. O. Rodriguez, S. M. Hecht, C. Chang, V. J. Basus, and N. J. Oppenheimer: Biochemistry 24, 81 (1985).

    CAS  Google Scholar 

  39. T. Suzuki, J. Kuwahara, and Y. Sugiura: Biochemistry 24, 4719 (1985).

    CAS  Google Scholar 

  40. C. M. Vos, G. Westera, and D. Schimmer: J. Inorg. Biochem. 13, 165 (1980).

    CAS  Google Scholar 

  41. L. H. DeReimer, C. F. Meares, D. A. Goodwein, and C. I. Diamanti: J. Med. Chem. 22, 1019 (1979).

    Google Scholar 

  42. C. H. Chang and C. F. Meares: Biochemistry 21, 6332 (1982).

    CAS  Google Scholar 

  43. C. H. Chang and C. F. Meares: Biochemistry 23, 2268 (1984).

    CAS  Google Scholar 

  44. G. M. Ehrenfeld, N. Murugesan, and S. M. Hecht: Inorg. Chem. 23, 1498 (1984).

    Google Scholar 

  45. R. M. Burger, J. H. Freedman, S. B. Horwitz, and J. Peisach: Inorg. Chem. 23, 2217 (1984).

    Google Scholar 

  46. T. Suzuki, J. Kuwahara, M. Goto, and Y. Sugiura: Biochim. Biophys. Acta 824, 330 (1985).

    CAS  Google Scholar 

  47. M. Chien, A. P. Grollman, and S. B. Horwitz: Biochemistry 16, 3641 (1977).

    CAS  Google Scholar 

  48. L. F. Povirk, M. Hogan, and N. Dattagupta: Biochemistry 18, 96 (1979).

    CAS  Google Scholar 

  49. H. Kasai, H. Naganawa, T. Takita, and H. Umezawa: J. Antibiot. 31, 1316 (1978).

    CAS  Google Scholar 

  50. L. F. Povirk, M. Hogan, N. Dattagupta, and M. Buechner: Biochemistry 20, 665 (1981).

    CAS  Google Scholar 

  51. R. E. Kilkuskie, H. Suguna, B. Yellin, N. Murguesan, and S. M. Hescht: J. Am. Chem. Soc. 107, 260 (1985).

    CAS  Google Scholar 

  52. A. D. D’Andrea and W. A. Haseltine: Proc. Natl. Acad. Sci. USA 75, 3608 (1978).

    Google Scholar 

  53. M. Takeshita, A. Grollman, E. Otshubo, and H. Otshubo: Proc. Natl. Acad. Sci. USA 75, 5983 (1978).

    CAS  Google Scholar 

  54. Y. Sugiura, T. Suzuki, M. Otsuka, S. Kobayashi, M. Ohno, T. Takita, and H. Umezawa: J. Biol. Chem. 258, 1328 (1983).

    CAS  Google Scholar 

  55. C. H. Chang, C. K. Mirabelli, Y. Jan, and S. T. Crooke: Biochemistry 20, 233 (1981).

    Google Scholar 

  56. Y. Sugiura and T. Suzuki: J. Biol. Chem. 257, 10544 (1982).

    CAS  Google Scholar 

  57. P. K. Mascharak, Y. Sugiura, J. Kuwahara, T. Suzuki, and S. J. Lippard: Proc. Natl. Acad. Sci. USA 80, 6795 (1983).

    CAS  Google Scholar 

  58. T. Suzuki, J. Kuwahara, and Y. Sugiura: Biochem. Biophys. Res. Comm. 117, 916 (1983).

    CAS  Google Scholar 

  59. E. A. Sausville, J. Peisach, and S. B. Horwitz: Biochem. Biophys. Res. Comm. 73, 814 (1976).

    CAS  Google Scholar 

  60. R. Ishida and T. Takahashi: Biochem. Biophys. Res. Comm. 66, 1432 (1975).

    CAS  Google Scholar 

  61. E. A. Sausville, J. Peisach, and S. B. Horwitz: Biochemistry 17, 2740 (1978).

    CAS  Google Scholar 

  62. E. A. Sausville, R. W. Stein, J. Peisach, and S. B. Horwitz: Biochemistry 17, 2746 (1978).

    CAS  Google Scholar 

  63. J. W. Lown and S. K. Sim: Biochem. Biophys. Res. Comm. 77, 1150 (1977).

    CAS  Google Scholar 

  64. R. M. Burger, J. Peisach, W. E. Blumberg, and S. B. Horwitz: J. Biol. Chem. 254, 10906 (1979).

    CAS  Google Scholar 

  65. M. Otsuka, M. Yoshida, S. Kobayashi, M. Ohno, Y. Sugiura, T. Takita, and H. Umezawa: J. Am. Chem. Soc. 103, 6986 (1981).

    CAS  Google Scholar 

  66. Y. Sugiura: J. Am. Chem. Soc. 102, 5208 (1980).

    CAS  Google Scholar 

  67. Y. Sugiura, T. Takita, and H. Umezawa: J. Antibiot. 34, 249 (1981).

    CAS  Google Scholar 

  68. Y. Sugiura and K. Ishizu: J. Inorg. Biochem. 11, 171 (1979).

    CAS  Google Scholar 

  69. Y. Sugiura and T. Kikuchi: J. Antibiot. 31, 1310 (1978).

    CAS  Google Scholar 

  70. R. M. Burger, S. B. Horwitz, J. Peisach, and J. B. Wittenberg: J. Biol. Chem. 254, 12299 (1979).

    Google Scholar 

  71. J. P. Albertini, A. Garnier-Suillerot, and L. Tosi: Biochem. Biophys. Res. Comm. 104, 557 (1982).

    CAS  Google Scholar 

  72. H. Kuramochi, T. Takahashi, T. Takita, and H. Umezawa: J. Antibiot. 34, 576 (1981).

    CAS  Google Scholar 

  73. D. L. Melnyk, S. B. Horwitz, and J. Peisach: Biochemistry 20, 5327 (1981).

    CAS  Google Scholar 

  74. R. M. Burger, T. A. Kent, S. B. Horwitz, E. Munck, and J. Peisach: J. Biol. Chem. 258, 1559 (1983).

    CAS  Google Scholar 

  75. R. M. Burger, J. Peisach, and S. B. Horwitz: J. Biol. Chem. 256, 11636 (1981).

    CAS  Google Scholar 

  76. R. M. Burger, J. S. Blanchard, S. B. Horwitz, and J. Peisach: J. Biol. Chem. 260, 15406 (1985).

    CAS  Google Scholar 

  77. G. Padbury and S. S. Sligar: J. Biol. Chem. 260, 7820 (1985).

    CAS  Google Scholar 

  78. J. C. Wu, J. W. Kozarich, and J. A. Stubbe: J. Biol. Chem. 258, 4694 (1983).

    CAS  Google Scholar 

  79. A. P. Grollman, M. Takeshita, K. M. R. Pillai, and F. Johnson: Cancer Res. 45, 1127 (1985).

    CAS  Google Scholar 

  80. R. M. Burger, J. Peisach, and S. B. Horwitz: J. Biol. Chem. 257, 2401 (1982).

    Google Scholar 

  81. R. B. Martin: Metal Ions in Biol. Syst. 19, 19 (1985).

    CAS  Google Scholar 

  82. J. Hajdu: Metal Ions in Biol Syst. 19, 53 (1985).

    CAS  Google Scholar 

  83. R. Kiraly and R. B. Martin: Inorg. Chim. Acta 67, 13 (1982).

    CAS  Google Scholar 

  84. H. Beraldo, A. Garnier-Suillerot, and L. Tosi: Inorg. Chem. 22, 4117 (1983).

    CAS  Google Scholar 

  85. P. M. May, G. K. Williams, and D. R. Williams: Inorg. Chim. Acta 46, 221 (1980).

    CAS  Google Scholar 

  86. F. T. Greenway and J. C. Dabrowiak: J. Inorg. Biochem. 16, 91 (1982).

    Google Scholar 

  87. P. K. Dutta and J. A. Hutt: Biochemistry 25, 691 (1986).

    CAS  Google Scholar 

  88. C. E. Myers, L. Gianni, C. B. Simone, R. Klecker, and R. Greene: Biochemistry 21, 1707 (1982).

    CAS  Google Scholar 

  89. H. Beraldo, A. Garnier-Suillerot, and L. Tosi: Biochemistry 24, 284 (1985).

    CAS  Google Scholar 

  90. M. M. L. Fiallo and A. Garnier-Suillerot: Biochemistry 25, 924 (1986).

    CAS  Google Scholar 

  91. A. Pasini, G. Pratesi, G. Savi and F. Zunino: Inorg. Chim. Acta 137, 123 (1987).

    CAS  Google Scholar 

  92. M. Gosvalez, M. F. Blanco, C. Vivero, and F. Valles: Eur. J. Cancer 14, 1185 (1978).

    Google Scholar 

  93. M. J. Egorin, R. E. Clawson, L. A. Ross, R. D. Friedman, S. D. Reich, A. Pollak, and N. R. Bachur: Cancer Res. 43, 3253 (1983).

    CAS  Google Scholar 

  94. K. Sugioka and M. Nakano: Biochim. Biophys. Acta 713, 333 (1982).

    CAS  Google Scholar 

  95. K. Sugioka, H. Nakano, T. Noguchi, J. Tschiya, and M. Nakano: Biochem. Biophys. Res. Comm. 100, 1251 (1981).

    CAS  Google Scholar 

  96. E. G. Mimnaugh, M. A. Trush, and T. E. Gram: Biochem. Pharmacol. 30, 2797 (1981).

    CAS  Google Scholar 

  97. H. Kappus, H. Muirawan, and M. E. Schuelen: In Vivo Studies on Adriamycin Induced Lipid Peroxidation and Effects of Ferrous Ions (Mechanism of Toxicity and Hazard Evaluation, B. Holmstedt, R. Lauwerys, M. Mericer, and M. Roberfroid), p. 635. Elsevier, New York (1980).

    Google Scholar 

  98. E. J. F. Demant: Eur. J. Biochem. 137, 113 (1983).

    CAS  Google Scholar 

  99. L. Gianni, B. J. Corden, and C. E. Myers: The Biochemical Basis of Anthracycline Toxicity and Antitumour Activity (Reviews in Biochemical Toxicology, Eds. Hodgson, Bead, and Philpot) p. 1. Elsevier, New York (1983).

    Google Scholar 

  100. N. S. Mizuno: Antibiotics V (2) Ed. F. E. Hahn, pp. 372–384. Springer-Verlag (1979).

    Google Scholar 

  101. H. L. White and J. R. White: Biochim. Biophys. Acta 123, 648 (1966).

    CAS  Google Scholar 

  102. R. Cone, S. K. Hasan, J. W. Lown, and A. R. Morgan: Can. J. Biochem. 54, 219 (1976).

    CAS  Google Scholar 

  103. J. W. Lown, S. K. Sim, K. D. Majundar, and R. Y. Chang: Biochem. Biophys. Res. Comm. 16, 705 (1977).

    Google Scholar 

  104. J. W. Lown and A. V. Joshua: Can. J. Chem. 59, 390 (1981).

    CAS  Google Scholar 

  105. J. W. Lown: Acc. Chem. Res. 15, 381 (1982).

    CAS  Google Scholar 

  106. N. R. Bachur, S. L. Gordon, and M. V. Gee: Cancer Res. 38, 1745 (1978).

    CAS  Google Scholar 

  107. N. R. Bachur, S. L. Gordon, M. V. Gee, and H. Kon: Proc. Natl. Acad. Sci. USA 76, 914 (1979).

    Google Scholar 

  108. J. Hadju and E. C. Armstrong: J. Am. Chem. Soc. 103, 232 (1981).

    Google Scholar 

  109. K. V. Rao: J. Pharm. Sci. 68, 853 (1979).

    CAS  Google Scholar 

  110. Y. H. Chiu and W. N. Lipscomb: J. Am. Chem. Soc. 97, 2525 (1975).

    CAS  Google Scholar 

  111. S. M. Hecht: Acc. Chem. Res. 19, 383 (1986).

    CAS  Google Scholar 

  112. J. Stubbe and J. W. Kozarich: Chem. Rev. 87, 1107 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Farrell, N. (1989). Metal-Mediated Antibiotic Action. In: Transition Metal Complexes as Drugs and Chemotherapeutic Agents. Catalysis by Metal Complexes, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7568-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7568-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7570-8

  • Online ISBN: 978-94-011-7568-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics